Computer versus cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban p.Arg14del mutation on the electrocardiogram?

被引:27
|
作者
Bleijendaal, Hidde [1 ,2 ]
Ramos, Lucas A. [2 ,3 ]
Lopes, Ricardo R. [3 ]
Verstraelen, Tom E. [1 ]
Baalman, Sarah W. E. [1 ]
Pool, Marinka D. Oudkerk [1 ]
Tjong, Fleur V. Y. [1 ]
Melgarejo-Meseguer, Francisco M. [4 ]
Javier Gimeno-Blanes, F. [5 ]
Gimeno-Blanes, Juan R. [4 ,6 ]
Amin, Ahmad S. [1 ,6 ]
Winter, Michiel M. [1 ]
Marquering, Henk A. [3 ]
Kok, Wouter E. M. [1 ]
Zwinderman, Aeilko H. [2 ]
Wilde, Arthur A. M. [1 ,6 ]
Pinto, Yigal M. [1 ]
机构
[1] Univ Amsterdam, Heart Ctr, Dept Clin & Expt Cardiol, Amsterdam Cardiovasc Sci,Amsterdam UMC, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Clin Epidemiol Biostat & Bioinformat, Amsterdam UMC, Amsterdam, Netherlands
[3] Univ Amsterdam, Dept Biomed Engn & Phys, Amsterdam UMC, Amsterdam, Netherlands
[4] Virgen Arrixaca Hosp, El Palmar, Spain
[5] Miguel Hernandez Univ, Alicante, Spain
[6] European Reference Network Rare & Low Prevalence, Barcelona, Spain
关键词
Cardiomyopathy; Deep learning; ECG analysis; Genetic heart disease; Machine learning; Phospholamban; HYPERTROPHIC CARDIOMYOPATHY; CLASSIFICATION;
D O I
10.1016/j.hrthm.2020.08.021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Phospholamban (PLN) p.Arg14del mutation carriers are known to develop dilated and/or arrhythmogenic cardiomyopathy, and typical electrocardiographic (ECG) features have been identified for diagnosis. Machine learning is a powerful tool used in ECG analysis and has shown to outperform cardiologists. OBJECTIVES We aimed to develop machine learning and deep learning models to diagnose PLN p.Arg14del cardiomyopathy using ECGs and evaluate their accuracy compared to an expert cardiologist. METHODS We included 155 adult PLN mutation carriers and 155 age- and sex-matched control subjects. Twenty-one PLN mutation carriers (13.4%) were classified as symptomatic (symptoms of heart failure or malignant ventricular arrhythmias). The data set was split into training and testing sets using 4-fold cross-validation. Multiple models were developed to discriminate between PLN mutation carriers and control subjects. For comparison, expert cardiologists classified the same data set. The best performing models were validated using an external PLN p.Arg14del mutation carrier data set from Murcia, Spain (n = 50). We applied occlusion maps to visualize the most contributing ECG regions. RESULTS In terms of specificity, expert cardiologists (0.99) outperformed all models (range 0.53-0.81). In terms of accuracy and sensitivity, experts (0.28 and 0.64) were outperformed by all models (sensitivity range 0.65-0.81). T-wave morphology was most important for classification of PLN p.Arg14del carriers. External validation showed comparable results, with the best model outperforming experts. CONCLUSION This study shows that machine learning can outperform experienced cardiologists in the diagnosis of PLN p.Arg14del cardiomyopathy and suggests that the shape of the T wave is of added importance to this diagnosis.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 19 条
  • [1] Phospholamban immunostaining is a highly sensitive and specific method for diagnosing phospholamban p.Arg14del cardiomyopathy
    te Rijdt, W. P.
    van der Klooster, J.
    Vink, A.
    Suurmeijer, A.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2017, 47 : 32 - 33
  • [2] Generation and validation of a mouse model of the phospholamban p.Arg14del mutation
    Eijgenraam, T. R.
    Sillje, H. H. W.
    De Boer, R. A.
    EUROPEAN JOURNAL OF HEART FAILURE, 2018, 20 : 197 - 197
  • [3] Phospholamban Immunostaining is a Highly Sensitive and Specific Method for Diagnosing Phospholamban p.Arg14del Cardiomyopathy
    Rijdt, W. P. te
    van der Klooster, Z. J.
    van Tintelen, J. P.
    Dooijes, D.
    Asselbergs, F. W.
    van den Berg, M. P.
    Vink, A.
    Suurmeijer, A. J. H.
    CIRCULATION, 2016, 134
  • [4] Phospholamban immunostaining is a highly sensitive and specific method for diagnosing phospholamban p.Arg14del cardiomyopathy
    te Rijdt, Wouter P.
    van der Klooster, Z. Joy
    Hoorntje, Edgar T.
    Jongbloed, Jan D. H.
    van der Zwaag, Paul A.
    Asselbergs, Folkert W.
    Dooijes, Dennis
    de Boer, Rudolf A.
    van Tintelen, J. Peter
    van den Berg, Maarten P.
    Vink, Aryan
    Suurmeijer, Albert J. H.
    CARDIOVASCULAR PATHOLOGY, 2017, 30 : 23 - 26
  • [5] The phospholamban p.Arg14del founder mutation in Dutch patients with arrhythmogenic cardiomyopathy
    van der Heijden, J. F.
    Hassink, R. J.
    NETHERLANDS HEART JOURNAL, 2013, 21 (06) : 284 - 285
  • [6] The phospholamban p.Arg14del founder mutation in Dutch patients with arrhythmogenic cardiomyopathy
    J. F. van der Heijden
    R. J. Hassink
    Netherlands Heart Journal, 2013, 21 : 284 - 285
  • [7] Phospholamban immunostaining is a highly sensitive and specific method for diagnosing PLN p.Arg14del cardiomyopathy
    Te Rijdt, W. P.
    van der Klooster, Z. J.
    Vink, A.
    Suurmeijer, A. J.
    VIRCHOWS ARCHIV, 2016, 469 : S68 - S68
  • [8] Echocardiography Reveals Biventricular Abnormalities in Presymptomatic Phospholamban p.Arg14del Mutation Carriers
    te Rijdt, Wouter P.
    Hummel, Yoran M.
    van Tintelen, J. Peter
    de Boer, Rudolf A.
    van den Berg, Maarten P.
    CIRCULATION, 2014, 130
  • [9] A mutation specific prediction model for ventricular arrhythmias in the phospholamban (PLN) p.Arg14del cardiomyopathy
    Verstraelen, T. E.
    Van Lint, F. H. M.
    Bosman, L. P.
    Abeln, B. G. S.
    Asselbergs, F. W.
    Van Der Zwaag, P. A.
    Van Den Berg, M. P.
    Van Tintelen, J. P.
    Wilde, A. A. M.
    EUROPEAN HEART JOURNAL, 2019, 40 : 3083 - 3083
  • [10] Recurrent and founder mutations in the Netherlands—Phospholamban p.Arg14del mutation causes arrhythmogenic cardiomyopathy
    P. A. van der Zwaag
    I. A. W. van Rijsingen
    R. de Ruiter
    E. A. Nannenberg
    J. A. Groeneweg
    J. G. Post
    R. N. W. Hauer
    I. C. van Gelder
    M. P. van den Berg
    P. van der Harst
    A. A. M. Wilde
    J. P. van Tintelen
    Netherlands Heart Journal, 2013, 21 : 286 - 293