Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene

被引:96
|
作者
Farrell, J [1 ]
Melitas, N [1 ]
Kason, M [1 ]
Li, T [1 ]
机构
[1] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1021/es991135b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research investigated the long-term performance of zero-valent iron aggregates for reductive dechlorination of trichloroethylene (TCE) and perchloroethylene (PCE). The effects of elapsed time, mass transfer limitations, and influent halocarbon concentration on reductive dechlorination rates were investigated using groundwater obtained from a field site contaminated with chlorinated organic compounds. Over the first 300 days of operation, reaction rates for TCE and PCE gradually increased due to increasing porosity of the iron aggregates. Although there was microbial growth in the column, biological activity did not measurably contribute to reductive dechlorination. Dechlorination rates were pseudo-first-order in reactant concentration for submillimolar halocarbon concentrations. TCE concentrations near aqueous saturation resulted in passivation of the iron surfaces and deviation from first-order reaction kinetics. However, this passivation was slowly reversible upon lowering the influent TCE concentration. Tafel polarization diagrams for an electrode constructed from the iron aggregates indicated that corrosion of the aggregates was anodically controlled. At all halocarbon concentrations, aggregate oxidation by water accounted for more than 80% of the corrosion. Throughout the course of the 3-yr column investigation, reaction rates for TCE were 2-3 times faster than those for PCE. However, current measurements with the aggregate electrode indicated that direct PCE reduction was faster than that for TCE. This disparity between amperometrically measured reaction rates and those measured in the column reactor indicated that halocarbon reduction may occur via direct electron transfer or may occur indirectly through reaction with atomic hydrogen adsorbed to the iron. Comparison of aggregate corrosion rates with those of fresh iron suggested that anodic control of corrosion leads to predominance of the indirect reduction mechanism. The faster reaction rate for TCE under anodically controlled conditions can therefore be attributed to its faster rate of indirect reduction as compared to PCE.
引用
收藏
页码:2549 / 2556
页数:8
相关论文
共 41 条
  • [1] Effect of cyclodextrins on iron-mediated dechlorination of trichloroethylene - A proposed new mechanism
    Shirin, S
    Buncel, E
    vanLoon, G
    CANADIAN JOURNAL OF CHEMISTRY, 2004, 82 (12) : 1674 - 1685
  • [2] Iron-mediated reductive transformations: Investigation of reaction mechanism
    Weber, EJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (02) : 716 - 719
  • [3] A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant - A column study
    Li, Zhaohui
    Willms, Cari
    Alley, Jeff
    Zhang, Pengfei
    Bowman, Robert S.
    WATER RESEARCH, 2006, 40 (20) : 3811 - 3819
  • [4] Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene
    Brumovsky, Miroslav
    Oborna, Jana
    Micic, Vesna
    Malina, Ondrej
    Kaslik, Josef
    Tunega, Daniel
    Kolos, Miroslav
    Hofmann, Thilo
    Karlicky, Frantisek
    Filip, Jan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (07) : 4425 - 4436
  • [5] IRON-MEDIATED REDUCTIVE TRANSFORMATIONS - INVESTIGATION OF REACTION-MECHANISM
    WEBER, EJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 130 - ENVR
  • [6] Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron
    Rajajayavel, Sai Rajasekar C.
    Ghoshal, Subhasis
    WATER RESEARCH, 2015, 78 : 144 - 153
  • [7] Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene
    Paul, Laiby
    Smolders, Erik
    CHEMOSPHERE, 2014, 111 : 471 - 477
  • [8] REDUCTIVE DECHLORINATION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE UNDER AEROBIC CONDITIONS IN A SEDIMENT COLUMN
    ENZIEN, MV
    PICARDAL, F
    HAZEN, TC
    ARNOLD, RG
    FLIERMANS, CB
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (06) : 2200 - 2204
  • [9] Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene
    Farrell, J
    Kason, M
    Melitas, N
    Li, T
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (03) : 514 - 521
  • [10] Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron
    Shin, Min-Chul
    Choi, Hyun-Doc
    Kim, Do-Hyung
    Baek, Kitae
    DESALINATION, 2008, 223 (1-3) : 299 - 307