A New Weighting Approach with Application to Ionospheric Delay Constraint for GPS/GALILEO Real-Time Precise Point Positioning

被引:16
|
作者
Liu, Tianjun [1 ]
Wang, Jian [2 ]
Yu, Hang [1 ,3 ]
Cao, Xinyun [4 ,5 ]
Ge, Yulong [6 ]
机构
[1] China Univ Min & Technol, NASG Key Lab Land Environm & Disater Monitoring, Xuzhou 221116, Jiangsu, Peoples R China
[2] Beijing Univ Civil Engn & Architecure, Sch Geomat & Urban Spatial Informat, Beijing 100044, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, 1Daxue Rd, Xuzhou 221116, Jiangsu, Peoples R China
[4] NanJing Normal Univ, Sch Geog, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[5] Wuhan Univ, Sch Geodesy & Geomat, 129 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 12期
关键词
real-time precise point positioning; convergence time; ionospheric delay constraints; precise weighting; GLONASS; GPS;
D O I
10.3390/app8122537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The real-time precise point positioning (RT PPP) technique has attracted increasing attention due to its high-accuracy and real-time performance. However, a considerable initialization time, normally a few hours, is required in order to achieve the proper convergence of the real-valued ambiguities and other estimate parameters. The RT PPP convergence time may be reduced by combining quad-constellation global navigation satellite system (GNSS), or by using RT ionospheric products to constrain the ionosphere delay. But to improve the performance of convergence and achieve the best positioning solutions in the whole data processing, proper and precise variances of the observations and ionospheric constraints are important, since they involve the processing of measurements of different types and with different accuracy. To address this issue, a weighting approach is proposed by a combination of the weight factors searching algorithm and a moving-window average filter. In this approach, the variances of ionospheric constraints are adjusted dynamically according to the principle that the sum of the quadratic forms of weighted residuals is the minimum, and the filter is applied to combine all epoch-by-epoch weight factors within a time window. To evaluate the proposed approach, datasets from 31 Multi-GNSS Experiment (MGEX) stations during the period of DOY (day of year) 023-054 in 2018 are analyzed with different positioning modes and different data processing methods. Experimental results show that the new weighting approach can significantly improve the convergence performance, and that the maximum improvement rate reaches 35.9% in comparison to the traditional method of priori variance in the static dual-frequency positioning mode. In terms of the RMS (Root Mean Square) statistics of positioning errors calculated by the new method after filter convergence, the same accuracy level as that of RT PPP without constraints can be achieved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Improving real-time ionospheric delay extraction in precise point positioning with sidereal filtering
    Zheng B.
    Wang Y.
    Ou G.
    1600, Editorial Board of Medical Journal of Wuhan University (41): : 983 - 988
  • [2] Performance Analysis of Real-Time GPS/Galileo Precise Point Positioning Integrated with Inertial Navigation System
    Zhao, Lei
    Blunt, Paul
    Yang, Lei
    Ince, Sean
    SENSORS, 2023, 23 (05)
  • [3] Analysis on the Potential Performance of GPS and Galileo Precise Point Positioning using Simulated Real-Time Products
    Basile, Francesco
    Moore, Terry
    Hill, Chris
    JOURNAL OF NAVIGATION, 2019, 72 (01): : 19 - 33
  • [4] Analysis of Performance of Real-time GPS Precise Point Positioning
    Meng, Xiangguang
    Guo, Jiming
    Zhang, Shaocheng
    Shi, Junbo
    CSNC 2011: 2ND CHINA SATELLITE NAVIGATION CONFERENCE, VOLS 1-3, 2011, : 1195 - 1199
  • [5] GPS real-time precise point positioning for aerial triangulation
    Junbo Shi
    Xiuxiao Yuan
    Yang Cai
    Gaojing Wang
    GPS Solutions, 2017, 21 : 405 - 414
  • [6] GPS real-time precise point positioning for aerial triangulation
    Shi, Junbo
    Yuan, Xiuxiao
    Cai, Yang
    Wang, Gaojing
    GPS SOLUTIONS, 2017, 21 (02) : 405 - 414
  • [7] A real-time ionospheric model based on GNSS Precise Point Positioning
    Tu, Rui
    Zhang, Hongping
    Ge, Maorong
    Huang, Guanwen
    ADVANCES IN SPACE RESEARCH, 2013, 52 (06) : 1125 - 1134
  • [8] GPS/BDS Real-Time Precise Point Positioning for Kinematic Maritime Positioning
    Yang, Fuxin
    Li, Liang
    Zhao, Lin
    Cheng, Chun
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2017 PROCEEDINGS, VOL III, 2017, 439 : 295 - 307
  • [9] Real-time clock comparison and monitoring with multi-GNSS precise point positioning: GPS, GLONASS and Galileo
    Lyu, Daqian
    Zeng, Fangling
    Ouyang, Xiaofeng
    Zhang, Haichuan
    ADVANCES IN SPACE RESEARCH, 2020, 65 (01) : 560 - 571
  • [10] Analysis of Different Weighting Functions of Observations for GPS and Galileo Precise Point Positioning Performance
    Kiliszek, Damian
    Kroszczynski, Krzysztof
    Araszkiewicz, Andrzej
    REMOTE SENSING, 2022, 14 (09)