Application of solar electric propulsion to a comet surface sample return mission

被引:4
|
作者
Woo, Byoungsam
Coverstone, Victoria L.
Cupples, Michael
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[2] Sci Applicat Int Corp, InSpace Technol Assessment, Huntsville, AL 35806 USA
关键词
D O I
10.2514/1.23371
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Current NASA solar electric propulsion technology application readiness and NASA's evolutionary xenon thruster-based propulsion systems are compared for a comet surface sample return mission to Tempel 1. Mission and systems analyses are conducted over a range of array power for each propulsion system and for two medium-class launch vehicles. Engine configurations investigated for NASA, solar electric propulsion technology application readiness included five operational engines with one spare and six operational engines with on I e spare. The NASA evolutionary xenon thruster configuration investigated included two operational engines plus one spare, with performance estimated for two different throttling modes. Figures of merit for this comparison include solar electric propulsion dry mass, average engine throughput, and net nonpropulsion payload returned to Earth. For the comet surface sample return mission, the NASA evolutionary xenon thruster system outperforms the NASA solar electric propulsion technology application readiness system with the advantage of lighter dry mass and simpler hardware implementation.
引用
收藏
页码:1225 / 1230
页数:6
相关论文
共 50 条
  • [1] On the comet rendezvous exploration and its potential extension via solar electric propulsion (Comet Nucleus Sample and Return Mission)
    Kawaguchi, J
    ACTA ASTRONAUTICA, 2003, 52 (2-6) : 143 - 149
  • [2] Sample Survivability for a Comet Surface Sample Return Mission
    Papadakis, S. J.
    Gerasopoulos, K.
    Kalter, J.
    Tien-Street, B.
    Kott, T. M.
    Walter, R.
    Jin, M. H-C.
    Currano, L. J.
    Graham, J. S.
    Navid, H.
    Turner, K. R.
    Elsila, J. E.
    2017 IEEE AEROSPACE CONFERENCE, 2017,
  • [3] Sample and return mission from asteroid Nereus via solar electric propulsion
    Kawaguchi, J
    Fujiwara, A
    Sawai, S
    ACTA ASTRONAUTICA, 1996, 38 (02) : 87 - 101
  • [4] Main belt asteroid sample return mission using solar electric propulsion
    Dachwald, Bernd
    Seboldt, Wolfgang
    Loeb, Horst W.
    Schartner, Karl-Heinz
    ACTA ASTRONAUTICA, 2008, 63 (1-4) : 91 - 101
  • [5] A Comet Nucleus Sample Return mission using solar electric earth gravity assist
    Kawaguchi, J
    EXPLORATION OF SMALL SOLAR SYSTEM OBJECTS: PAST, PRESENT AND FUTURE, 2002, 29 (08): : 1215 - 1220
  • [6] Minimum fuel trajectories for sample-return mission using solar electric propulsion
    Ueno, S
    Maruyama, R
    SPACE DEVELOPMENT AND COOPERATION AMONG ALL PACIFIC BASIN COUNTRIES, 2002, 110 : 101 - 113
  • [7] Optimal use of electric propulsion for a Phobos sample return mission
    Geffroy, S
    Cledassou, R
    Pillet, N
    Meyer, JR
    SPACEFLIGHT MECHANICS 2001, VOL 108, PTS 1 AND 2, 2001, 108 : 339 - 357
  • [8] The Comet Interceptor Mission-Making a case for Solar Electric Propulsion
    Costa, Henrique R.
    Cabral, Francisco da Silva Pais
    Villa, Victor Manuel Moreno
    Gil, Paulo J. S.
    ACTA ASTRONAUTICA, 2023, 210 : 237 - 242
  • [9] Comet rendezvous mission design using solar electric propulsion spacecraft
    Kluever, CA
    JOURNAL OF SPACECRAFT AND ROCKETS, 2000, 37 (05) : 698 - 700
  • [10] Inner solar system sample return missions using solar electric propulsion
    McDaniel, RD
    Mohan, S
    Juárez, J
    2003 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-8, 2003, : 509 - 525