Learning-based single-shot superresolution in diffractive imaging

被引:8
|
作者
Horisaki, Ryoichi [1 ,2 ]
Takagi, Ryosuke [1 ]
Tanida, Jun [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Informat & Phys Sci, 1-5 Yamadaoka, Suita, Osaka 5650871, Japan
[2] PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
基金
日本学术振兴会;
关键词
OBJECT RECOGNITION; RECONSTRUCTION;
D O I
10.1364/AO.56.008896
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method of retrieving a superresolved object field from a single captured intensity image in diffraction-limited diffractive imaging based on machine learning. In this method, the inverse process of diffractive imaging is regressed by using a number of pairs, each consisting of object and captured images. The proposed method is experimentally demonstrated by using a lensless imaging setup with or without scattering media. (C) 2017 Optical Society of America
引用
收藏
页码:8896 / 8901
页数:6
相关论文
共 50 条
  • [1] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Szameit A.
    Shechtman Y.
    Osherovich E.
    Bullkich E.
    Sidorenko P.
    Dana H.
    Steiner S.
    Kley E.B.
    Gazit S.
    Cohen-Hyams T.
    Shoham S.
    Zibulevsky M.
    Yavneh I.
    Eldar Y.C.
    Cohen O.
    Segev M.
    Nature Materials, 2012, 11 (5) : 455 - 459
  • [2] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Szameit, A.
    Shechtman, Y.
    Osherovich, E.
    Bullkich, E.
    Sidorenko, P.
    Dana, H.
    Steiner, S.
    Kley, E. B.
    Gazit, S.
    Cohen-Hyams, T.
    Shoham, S.
    Zibulevsky, M.
    Yavneh, I.
    Eldar, Y. C.
    Cohen, O.
    Segev, M.
    NATURE MATERIALS, 2012, 11 (05) : 455 - 459
  • [3] Sparsity-based single-shot subwavelength coherent diffractive imaging
    Osherovich, Eliyahu
    Shechtman, Yoav
    Szameit, Alexander
    Sidorenko, Pavel
    Bullkich, Elad
    Gazit, Snir
    Shoham, Shy
    Kley, Ernst B.
    Zibulevsky, Michael
    Yavneh, Irad
    Eldar, Yonina C.
    Cohen, Oren
    Segev, Mordechai
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [4] Single-shot color image encryption based on mixed state diffractive imaging
    He, Xiaoliang
    Tao, Hua
    Liu, Cheng
    Zhu, Jianqiang
    OPTICS AND LASERS IN ENGINEERING, 2018, 107 : 112 - 118
  • [5] Deep learning-based single-shot structured illumination microscopy
    Zhang, Qinnan
    Chen, Jiawei
    Li, Jiaosheng
    Bo, En
    Jiang, Heming
    Lu, Xiaoxu
    Zhong, Liyun
    Tian, Jindong
    OPTICS AND LASERS IN ENGINEERING, 2022, 155
  • [6] Deep Learning-based Single-shot Fringe Projection Profilometry
    Zuo, Ruizhi
    Wei, Shuwen
    Wang, Yaning
    Kam, Michael
    Opfermann, Justin D.
    Hsieh, Michael H.
    Krieger, Axel
    Kang, Jin U.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC AND SURGICAL GUIDANCE SYSTEMS XXII, 2024, 12831
  • [7] Method for Single-Shot Coherent Diffractive Imaging of Magnetic Domains
    Flewett, Samuel
    Schaffert, Stefan
    Mohanty, Jyoti
    Guehrs, Erik
    Geilhufe, Jan
    Guenther, Christian M.
    Pfau, Bastian
    Eisebitt, Stefan
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [8] Learning Rank-1 Diffractive Optics for Single-shot High Dynamic Range Imaging
    Sun, Qilin
    Tseng, Ethan
    Fu, Qiang
    Heidrich, Wolfgang
    Heide, Felix
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1383 - 1393
  • [9] Computational Single-shot Hyper-spectral Imaging based on a Microstructured Diffractive Optic
    Wang, Peng
    Menon, Rajesh
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [10] Deep learning-based single-shot autofocus method for digital microscopy
    Liao, Jun
    Chen, Xu
    Ding, Ge
    Dong, Pei
    Ye, Hu
    Wang, Han
    Zhang, Yongbing
    Yao, Jianhua
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (01) : 314 - 327