Distance Covariance Analysis

被引:0
|
作者
Cowley, Benjamin R. [1 ]
Semedo, Joao D. [1 ]
Zandvakili, Amin [2 ]
Smith, Matthew A. [3 ]
Kohn, Adam [4 ]
Yu, Byron M. [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Brown Univ, Providence, RI USA
[3] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[4] Albert Einstein Coll Med, New York, NY USA
基金
美国安德鲁·梅隆基金会;
关键词
CANONICAL CORRELATION-ANALYSIS; DIMENSIONALITY REDUCTION; ASSOCIATION; COMMON; SETS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a dimensionality reduction method to identify linear projections that capture interactions between two or more sets of variables. The method, distance covariance analysis (DCA), can detect both linear and nonlinear relationships, and can take dependent variables into account. On previous testbeds and a new testbed that systematically assesses the ability to detect both linear and nonlinear interactions, DCA performs better than or comparable to existing methods, while being one of the fastest methods. To showcase the versatility of DCA, we also applied it to three different neurophysiological datasets.
引用
收藏
页码:242 / 251
页数:10
相关论文
共 50 条
  • [1] Independent Component Analysis via Distance Covariance
    Matteson, David S.
    Tsay, Ruey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 623 - 637
  • [2] On the uniqueness of distance covariance
    Szekely, Gabor J.
    Rizzo, Maria L.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2278 - 2282
  • [3] BROWNIAN DISTANCE COVARIANCE
    Szekely, Gabor J.
    Rizzo, Maria L.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (04): : 1236 - 1265
  • [4] Optimization of covariance distance measurement algorithm for multidimensional clustering analysis
    Liu, Yun
    Zhang, Yi
    Zheng, Wenfeng
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 102 - 110
  • [5] Nonlinear functional canonical correlation analysis via distance covariance
    Zhu, Hanbing
    Li, Rui
    Zhang, Riquan
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 180
  • [6] Fast Computing for Distance Covariance
    Huo, Xiaoming
    Szekely, Gabor J.
    TECHNOMETRICS, 2016, 58 (04) : 435 - 447
  • [7] A Basic Treatment of the Distance Covariance
    Edelmann, Dominic
    Terzer, Tobias
    Richards, Donald
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (SUPPL 1): : 12 - 25
  • [8] A Basic Treatment of the Distance Covariance
    Dominic Edelmann
    Tobias Terzer
    Donald Richards
    Sankhya B, 2021, 83 : 12 - 25
  • [9] DISTANCE COVARIANCE FOR STOCHASTIC PROCESSES
    Matsui, Muneya
    Mikosch, Thomas
    Samorodnitsky, Gennady
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (02): : 355 - 372
  • [10] Distance covariance for random fields
    Matsui, Muneya
    Mikosch, Thomas
    Roozegar, Rasool
    Tafakori, Laleh
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 150 : 280 - 322