On endotrivial modules for Lie superalgebras

被引:1
|
作者
Talian, Andrew J. [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Lie superalgebras; Endotrivial modules; Representation theory; Detecting subalgebras; ENDO-PERMUTATION MODULES; SYMMETRIC-GROUPS; CLASSIFICATION;
D O I
10.1016/j.jalgebra.2015.02.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g = g((0) over bar) circle plus g((1) over bar) be a Lie superalgebra over an algebraically closed field, k, of characteristic 0. An endotrivial g-module, M, is a g-supermodule such that Hom(k) (M, M) congruent to k(ev) circle plus P as g-supermodules, where k(ev) is the trivial module concentrated in degree (0) over bar and P is a projective g-supermodule. In the stable module category, these modules form a group under the operation of the tensor product. We show that for an endotrivial module M, the syzygies Omega(n)(M) are also endotrivial, and for certain Lie superalgebras of particular interest, we show that Omega(1)(k(ev)) and the parity change functor actually generate the group of endotrivials. Additionally, for a broader class of Lie superalgebras, for a fixed n, we show that there are finitely many endotrivial modules of dimension n. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Endotrivial modules for nilpotent restricted Lie algebras
    Benson, David J.
    Carlson, Jon F.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 503 - 513
  • [2] Endotrivial modules for finite groups of Lie type
    Carlson, Jon F.
    Mazza, Nadia
    Nakano, Daniel K.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 595 : 93 - 119
  • [3] Endotrivial modules for nilpotent restricted Lie algebras
    David J. Benson
    Jon F. Carlson
    Archiv der Mathematik, 2020, 114 : 503 - 513
  • [4] WEYL MODULES FOR LIE SUPERALGEBRAS
    Calixto, Lucas
    Lemay, Joel
    Savage, Alistair
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3191 - 3207
  • [5] Tilting modules for Lie superalgebras
    Brundan, J
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2251 - 2268
  • [6] Lie conformal superalgebras and duality of modules over linearly compact Lie superalgebras
    Cantarini, Nicoletta
    Caselli, Fabrizio
    Kac, Victor
    ADVANCES IN MATHEMATICS, 2021, 378
  • [7] Whittaker Modules for Classical Lie Superalgebras
    Chih-Whi Chen
    Communications in Mathematical Physics, 2021, 388 : 351 - 383
  • [8] INTEGRABLE MODULES FOR AFFINE LIE SUPERALGEBRAS
    Rao, Senapathi Eswara
    Futorny, Vyacheslav
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5435 - 5455
  • [9] Whittaker Modules for Classical Lie Superalgebras
    Chen, Chih-Whi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 351 - 383
  • [10] Tilting modules for classical Lie superalgebras
    Chen, Chih-Whi
    Cheng, Shun-Jen
    Coulembier, Kevin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (03): : 870 - 900