Ambiguous risk constraints with moment and unimodality information

被引:37
|
作者
Li, Bowen [1 ]
Jiang, Ruiwei [2 ]
Mathieu, Johanna L. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Ambiguity; Chance constraints; Conditional Value-at-Risk; Second-order cone representation; Separation; Golden section search; WORST-CASE VALUE; VALUE-AT-RISK; ROBUST; OPTIMIZATION; BOUNDS;
D O I
10.1007/s10107-017-1212-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional information consists of the first two moments of the uncertainty and a generalized notion of unimodality. We find that the ambiguous risk constraints in this setting can be recast as a set of second-order cone (SOC) constraints. In order to facilitate the algorithmic implementation, we also derive efficient ways of finding violated SOC constraints. Finally, we demonstrate the theoretical results via computational case studies on power system operations.
引用
收藏
页码:151 / 192
页数:42
相关论文
共 50 条
  • [1] Ambiguous risk constraints with moment and unimodality information
    Bowen Li
    Ruiwei Jiang
    Johanna L. Mathieu
    Mathematical Programming, 2019, 173 : 151 - 192
  • [2] Distributionally Robust Risk-Constrained Optimal Power Flow Using Moment and Unimodality Information
    Li, Bowen
    Jiang, Ruiwei
    Mathieu, Johanna L.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2425 - 2430
  • [3] Distributionally Robust Generation Expansion Planning With Unimodality and Risk Constraints
    Pourahmadi, Farzaneh
    Kazempour, Jalal
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (05) : 4281 - 4295
  • [4] COMMUNICATION OF AMBIGUOUS RISK INFORMATION
    VISCUSI, WK
    MAGAT, WA
    HUBER, J
    THEORY AND DECISION, 1991, 31 (2-3) : 159 - 173
  • [5] Minimizing Fisher information with absolute moment constraints
    Ernst, Philip A.
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 167 - 170
  • [6] Ambiguous Joint Chance Constraints Under Mean and Dispersion Information
    Hanasusanto, Grani A.
    Roitch, Vladimir
    Kuhn, Daniel
    Wiesemann, Wolfram
    OPERATIONS RESEARCH, 2017, 65 (03) : 751 - 767
  • [7] Interpretation of Ambiguous Information in Girls at Risk for Depression
    Dearing, Karen F.
    Gotlib, Ian H.
    JOURNAL OF ABNORMAL CHILD PSYCHOLOGY, 2009, 37 (01) : 79 - 91
  • [8] The Effect of Communicating Ambiguous Risk Information on Choice
    Melkonyan, Tigran A.
    JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2011, 36 (02) : 292 - 312
  • [9] Interpretation of Ambiguous Information in Girls at Risk for Depression
    Karen F. Dearing
    Ian H. Gotlib
    Journal of Abnormal Child Psychology, 2009, 37 : 79 - 91
  • [10] Robust Optimization with Ambiguous Stochastic Constraints Under Mean and Dispersion Information
    Postek, Krzysztof
    Ben-Tal, Aharon
    den Hertog, Dick
    Melenberg, Bertrand
    OPERATIONS RESEARCH, 2018, 66 (03) : 814 - 833