Role of Lithium Excess and Doping in Li1+xTi2-xMnx(PO4)3 (0.00 ≤ x ≤ 0.10)

被引:10
|
作者
Capsoni, Doretta [1 ]
Bini, Marcella [1 ]
Ferrari, Stefania [1 ]
Massarotti, Vincenzo [1 ]
Mozzati, Maria Cristina [2 ]
机构
[1] Univ Pavia, Phys Chem Sect, Dept Chem, I-27100 Pavia, Italy
[2] Univ Pavia, CNISM Dept Phys A Volta, I-27100 Pavia, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 01期
关键词
SOLID ELECTROLYTES; ION BATTERIES; TITANIUM PHOSPHATE; CYCLING STABILITY; THERMAL-EXPANSION; LITI2(PO4)(3); DIFFRACTION; CONDUCTORS; CERAMICS; MOBILITY;
D O I
10.1021/jp208671z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The role of lithium excess and Mn doping on lithium titanium phosphate properties is studied by structural (X-ray and neutron diffraction) and spectroscopic (electron paramagnetic resonance and impedance) techniques. The dopant cation is present with 2+, 3+, and 4+ oxidation states in both the lithium and titanium sublattices: Mn2+ is preferentially located on Li sites and Mn4+ on Ti ones, and Mn3+ can occupy both the sites. The refinement of neutron diffraction patterns allowed us to identify the 18e crystallographic site as the preferred location of the excess Li ions. Cationic distribution and valence state are mainly related to sol-gel or solid-state synthesis routes. Consequently, the complex behavior of the bulk conductivity can be explained by the presence of Mn on the Li site and the amount of Li excess, while the effect of the sintering degree is comparable in all the samples as revealed by scanning electron microscopy.
引用
收藏
页码:1244 / 1250
页数:7
相关论文
共 50 条
  • [1] IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, GY
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) : 590 - 591
  • [2] Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium Sulfur Batteries
    Wang, Shaofei
    Ding, Yu
    Zhou, Guangmin
    Yu, Guihua
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2016, 1 (06): : 1080 - 1085
  • [3] Structure refinement of lithium ion conductors Li3Sc2(PO4)3 and Li3-2x(Sc1-xMx)2(PO4)3 (M = Ti, Zr) with x = 0.10 by neutron diffraction
    Suzuki, T
    Yoshida, K
    Uematsu, K
    Kodama, T
    Toda, K
    Ye, ZG
    Ohashi, M
    Sato, M
    SOLID STATE IONICS, 1998, 113 : 89 - 96
  • [4] Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 146 - 154
  • [5] SYNTHESIS AND CRYSTALLOGRAPHIC DATA FOR THE SYSTEM LI1+XTI2-XINX(PO4)3
    HAMDOUNE, S
    GONDRAND, M
    QUI, DT
    MATERIALS RESEARCH BULLETIN, 1986, 21 (02) : 237 - 242
  • [6] Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation
    N. V. Kosova
    E. T. Devyatkina
    A. P. Stepanov
    A. L. Buzlukov
    Ionics, 2008, 14 : 303 - 311
  • [7] Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2-xAlx(PO4)3 (x=0; 0.3) prepared by mechanical activation
    Kosova, N. V.
    Devyatkina, E. T.
    Stepanov, A. P.
    Buzlukov, A. L.
    IONICS, 2008, 14 (04) : 303 - 311
  • [8] Cation mobility in modified Li1 − xTi2 − xNbx(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. A. Stenina
    A. I. Rebrov
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1177 - 1180
  • [9] Cation mobility in modified Li1 + xTi2 − xGax(PO4)3 lithium titanium NASICON phosphates
    I. Yu. Pinus
    I. V. Arkhangel’skii
    N. A. Zhuravlev
    A. B. Yaroslavtsev
    Russian Journal of Inorganic Chemistry, 2009, 54 : 1173 - 1176
  • [10] Effect of Mn in Li3V2-xMnx(PO4)3 as High Capacity Cathodes for Lithium Batteries
    Park, Jae-Sang
    Kim, Jongsoon
    Park, Woon Bae
    Sun, Yang-Kook
    Myung, Seung-Taek
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) : 40307 - 40316