Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests

被引:62
|
作者
Terryn, Louise [1 ]
Calders, Kim [1 ]
Bartholomeus, Harm [2 ]
Bartolo, Renee E. [3 ]
Brede, Benjamin [2 ,4 ]
D'hont, Barbara [1 ]
Disney, Mathias [5 ,6 ]
Herold, Martin [2 ,4 ]
Lau, Alvaro [2 ]
Shenkin, Alexander [7 ]
Whiteside, Timothy G. [3 ]
Wilkes, Phil [5 ,6 ]
Verbeeck, Hans [1 ]
机构
[1] Univ Ghent, Dept Environm, CAVElab Computat & Appl Vegetat Ecol, Ghent, Belgium
[2] Wageningen Univ Res, Lab Geoinformat Sci & Remote Sensing, Droevendaalsesteeg 3, NL-6708 PB Wageningen, Netherlands
[3] Environm Res Inst Supervising Scientist, Darwin, NT 0820, Australia
[4] Helmholtz GFZ German Res Ctr Geosci, Remote Sensing & Geoinformat, Sect 1-4, D-14473 Potsdam, Germany
[5] UCL, Dept Geog, Gower St, London WC1E 6BT, England
[6] UCL, NERC Natl Ctr Earth Observat NCEO, Gower St, London WC1E 6BT, England
[7] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England
基金
英国自然环境研究理事会;
关键词
Terrestrial laser scanning; Forest structure; Data fusion; Unoccupied aerial vehicle; Tropical forests; ABOVEGROUND BIOMASS; TREE; ARCHITECTURE; RANGE; LIDAR;
D O I
10.1016/j.rse.2022.112912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately quantifying tree and forest structure is important for monitoring and understanding terrestrial ecosystem functioning in a changing climate. The emergence of laser scanning, such as Terrestrial Laser Scanning (TLS) and Unoccupied Aerial Vehicle Laser Scanning (UAV-LS), has advanced accurate and detailed forest structural measurements. TLS generally provides very accurate measurements on the plot-scale (a few ha), whereas UAV-LS provides comparable measurements on the landscape-scale ( 10 ha). Despite the pivotal role dense tropical forests play in our climate, the strengths and limitations of TLS and UAV-LS to accurately measure structural metrics in these forests remain largely unexplored. Here, we propose to combine TLS and UAV-LS data from dense tropical forest plots to analyse how this fusion can further advance 3D structural mapping of structurally complex forests. We compared stand (vertical point distribution profiles) and tree level metrics from TLS, UAV-LS as well as their fused point cloud. The tree level metrics included the diameter at breast height (DBH), tree height (H), crown projection area (CPA), and crown volume (CV). Furthermore, we evaluated the impact of point density and number of returns for UAV-LS data acquisition. DBH measurements from TLS and UAV-LS were compared to census data. The TLS and UAV-LS based H, CPA and CV measurements were compared to those obtained from the fused point cloud. Our results for two tropical rainforest plots in Australia demonstrate that TLS can measure H, CPA and CV with an accuracy (RMSE) of 0.30 m (H-average =27.32 m), 3.06 m(2) (CPAaverage =66.74 m(2)), and 29.63 m(3) (CVaverage =318.81 m(3)) respectively. UAV-LS measures H, CPA and CV with an accuracy (RMSE) of <0.40 m, <5.50 m(2), and <30.33 m(3) respectively. However, in dense tropical forests single flight UAV-LS is unable to sample the tree stems sufficiently for DBH measurement due to a limited penetration of the canopy. TLS can determine DBH with an accuracy (RMSE) of 5.04 cm, (DBHaverage =45.08 cm), whereas UAV-LS can not. We show that in dense tropical forests stand-alone TLS is able to measure macroscopic structural tree metrics on plot-scale. We also show that UAV-LS can be used to quickly measure H, CPA, and CV of canopy trees on the landscape-scale with comparable accuracy to TLS. Hence, the fusion of TLS and UAV-LS, which can be time consuming and expensive, is not required for these purposes. However, TLS and UAV-LS fusion opens up new avenues to improve stand-alone UAV-LS structural measurements at the landscape scale by applying TLS as a local calibration tool.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantifying Mangrove Forest Attributes Using Terrestrial Laser Scanning
    Thomas Dunlop
    Alejandra Gijón Mancheño
    William Glamore
    Stefan Felder
    Bregje K. van Wesenbeeck
    Estuaries and Coasts, 2025, 48 (4)
  • [2] Quantifying tropical forest disturbances using canopy structural traits derived from terrestrial laser scanning
    Ghizoni Santos, Erone
    Henrique Nunes, Matheus
    Jackson, Toby
    Eiji Maeda, Eduardo
    Forest Ecology and Management, 2022, 524
  • [3] Quantifying tropical forest disturbances using canopy structural traits derived from terrestrial laser scanning
    Santos, Erone Ghizoni
    Nunes, Matheus Henrique
    Jackson, Toby
    Maeda, Eduardo Eiji
    FOREST ECOLOGY AND MANAGEMENT, 2022, 524
  • [4] Measuring forest structure with terrestrial laser scanning
    Watt, PJ
    Donoghue, DNM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (07) : 1437 - 1446
  • [5] Quantifying Forest Litter Fuel Moisture Content with Terrestrial Laser Scanning
    Batchelor, Jonathan L.
    Rowell, Eric
    Prichard, Susan
    Nemens, Deborah
    Cronan, James
    Kennedy, Maureen C.
    Moskal, L. Monika
    REMOTE SENSING, 2023, 15 (06)
  • [6] New tree height allometries derived from terrestrial laser scanning reveal substantial discrepancies with forest inventory methods in tropical rainforests
    Terryn, Louise
    Calders, Kim
    Meunier, Felicien
    Bauters, Marijn
    Boeckx, Pascal
    Brede, Benjamin
    Burt, Andrew
    Chave, Jerome
    da Costa, Antonio Carlos Lola
    D'hont, Barbara
    Disney, Mathias
    Jucker, Tommaso
    Lau, Alvaro
    Laurance, Susan G. W.
    Maeda, Eduardo Eiji
    Meir, Patrick
    Krishna Moorthy, Sruthi M.
    Nunes, Matheus Henrique
    Shenkin, Alexander
    Sibret, Thomas
    Verhelst, Tom E.
    Wilkes, Phil
    Verbeeck, Hans
    GLOBAL CHANGE BIOLOGY, 2024, 30 (08)
  • [7] Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure
    Moorthy, Sruthi M. Krishna
    Calders, Kim
    di Porcia e Brugnera, Manfredo
    Schnitzer, Stefan A.
    Verbeeck, Hans
    REMOTE SENSING, 2018, 10 (06)
  • [8] Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion
    de Almeida, Danilo Roberti Alves
    Broadbent, Eben North
    Ferreira, Matheus Pinheiro
    Meli, Paula
    Zambrano, Angelica Maria Almeyda
    Gorgens, Eric Bastos
    Resende, Angelica Faria
    de Almeida, Catherine Torres
    do Amaral, Cibele Hummel
    Corte, Ana Paula Dalla
    Silva, Carlos Alberto
    Romanelli, Joao P.
    Prata, Gabriel Atticciati
    Papa, Daniel de Almeida
    Stark, Scott C.
    Valbuena, Ruben
    Nelsonn, Bruce Walker
    Guillemot, Joannes
    Feret, Jean-Baptiste
    Chazdon, Robin
    Brancalion, Pedro H. S.
    REMOTE SENSING OF ENVIRONMENT, 2021, 264
  • [9] UAV-LiDAR and Terrestrial Laser Scanning for Automatic Extraction of Forest Inventory Parameters
    Meghraoui, Khadija
    Lfalah, Hamza
    Sebari, Imane
    Kellouch, Souhail
    Fadil, Sanaa
    El Kadi, Kenza Ait
    Bensiali, Saloua
    PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY, 2023, 304 : 375 - 393
  • [10] Quantifying wetland microtopography with terrestrial laser scanning
    Stovall, Atticus E. L.
    Diamond, Jacob S.
    Slesak, Robert A.
    McLaughlin, Daniel L.
    Shugart, Hank
    REMOTE SENSING OF ENVIRONMENT, 2019, 232