DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios

被引:124
|
作者
Yang, Guorun [1 ,2 ]
Song, Xiao [3 ]
Huang, Chaoqin [3 ,4 ]
Deng, Zhidong [1 ,2 ]
Shi, Jianping [3 ]
Zhou, Bolei [5 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Ctr Intelligent Connected Vehicles & Transportat, Beijing, Peoples R China
[3] SenseTime Grp Ltd, Hong Kong, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[5] Chinese Univ Hong Kong, Hong Kong, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR.2019.00099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Great progress has been made on estimating disparity maps from stereo images. However, with the limited stereo data available in the existing datasets and unstable ranging precision of current stereo methods, industry-level stereo matching in autonomous driving remains challenging. In this paper, we construct a novel large-scale stereo dataset named DrivingStereo. It contains over 180k images covering a diverse set of driving scenarios, which is hundreds of times larger than the KITTI Stereo dataset. High-quality labels of disparity are produced by a model-guided filtering strategy from multi frame LiDAR points. For better evaluations, we present two new metrics for stereo matching in the driving scenes, i.e. a distance-aware metric and a semantic-aware metric. Extensive experiments show that compared with the models trained on FlyingThings3D or Cityscapes, the models trained on our DrivingStereo achieve higher generalization accuracy in real-world driving scenes, while the proposed metrics better evaluate the stereo methods on all-range distances and across different classes. Our dataset and code are available at https://drivingstereo-dataset.github.io.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 50 条
  • [1] WHUVID: A Large-Scale Stereo-IMU Dataset for Visual-Inertial Odometry and Autonomous Driving in Chinese Urban Scenarios
    Chen, Tianyang
    Pu, Fangling
    Chen, Hongjia
    Liu, Zhihong
    REMOTE SENSING, 2022, 14 (09)
  • [2] Zenseact Open Dataset: A large-scale and diverse multimodal dataset for autonomous driving
    Alibeigi, Mina
    Ljungbergh, William
    Tonderski, Adam
    Hess, Georg
    Lilja, Adam
    Lindstrom, Carl
    Motorniuk, Daria
    Fu, Junsheng
    Widahl, Jenny
    Petersson, Christoffer
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20121 - 20131
  • [3] IDDA: A Large-Scale Multi-Domain Dataset for Autonomous Driving
    Alberti, Emanuele
    Tavera, Antonio
    Masone, Carlo
    Caputo, Barbara
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 5526 - 5533
  • [4] Hierarchical Motion Planning for Autonomous Driving in Large-Scale Complex Scenarios
    Zhang, Songyi
    Jian, Zhiqiang
    Deng, Xiaodong
    Chen, Shitao
    Nan, Zhixiong
    Zheng, Nanning
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 13291 - 13305
  • [5] Efficient Large-Scale Stereo Matching
    Geiger, Andreas
    Roser, Martin
    Urtasun, Raquel
    COMPUTER VISION-ACCV 2010, PT I, 2011, 6492 : 25 - +
  • [6] DSEC: A Stereo Event Camera Dataset for Driving Scenarios
    Gehrig, Mathias
    Aarents, Willem
    Gehrig, Daniel
    Scaramuzza, Davide
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4947 - 4954
  • [7] DISC: A Large-scale Virtual Dataset for Simulating Disaster Scenarios
    Jeon, Hae-Gon
    Im, Sunghoon
    Lee, Byeong-Uk
    Choi, Dong-Geol
    Hebert, Martial
    Kweon, In So
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 187 - 194
  • [8] UASOL, a large-scale high-resolution outdoor stereo dataset
    Zuria Bauer
    Francisco Gomez-Donoso
    Edmanuel Cruz
    Sergio Orts-Escolano
    Miguel Cazorla
    Scientific Data, 6
  • [9] UASOL, a large-scale high-resolution outdoor stereo dataset
    Bauer, Zuria
    Gomez-Donoso, Francisco
    Cruz, Edmanuel
    Orts-Escolano, Sergio
    Cazorla, Miguel
    SCIENTIFIC DATA, 2019, 6 (1)
  • [10] UAVStereo: A Multiple Resolution Dataset for Stereo Matching in UAV Scenarios
    Zhang, Xiaoyi
    Cao, Xuefeng
    Yu, Anzhu
    Yu, Wenshuai
    Li, Zhenqi
    Quan, Yujun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2942 - 2953