Numerical analysis of some dual-phase-lag models

被引:12
|
作者
Bazarra, N. [1 ]
Copetti, M. I. M. [2 ]
Fernandez, J. R. [1 ]
Quintanilla, R. [3 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, ETSI Telecomunicac, Buzon 104,Campus As Lagoas Marcosende S-N, Vigo 36310, Spain
[2] Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
[3] UPC, ESEIAAT, Dept Matemat, Colom 11, Barcelona 08222, Spain
关键词
Heat conduction; Dual-phase-lag; Finite elements; A priori estimates; Numerical simulations; HEAT-CONDUCTION; UNIFIED PROCEDURE; DEFORMABLE MEDIA; QUALITATIVE ASPECTS; DIFFERENCE SCHEME; STABILITY; CONSTRUCTION; CONTACT; DELAY;
D O I
10.1016/j.camwa.2018.09.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyse, from the numerical point of view, two dual-phase-lag models appearing in the heat conduction theory. Both models are written as linear partial differential equations of third order in time. The variational formulations, written in terms of the thermal acceleration, lead to linear variational equations, for which existence and uniqueness results, and energy decay properties, are recalled. Then, fully discrete approximations are introduced for both models using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. Discrete stability properties are proved, and a priori error estimates are obtained, from which the linear convergence of the approximations is derived. Finally, some numerical simulations are described in one and two dimensions to demonstrate the accuracy of the approximations and the behaviour of the solutions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 426
页数:20
相关论文
共 50 条
  • [1] Numerical analysis of a dual-phase-lag model with microtemperatures
    Bazarra, N.
    Copetti, M. I. M.
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 1 - 25
  • [2] Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction
    Bazarra, N.
    Campo, M.
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 76 - 90
  • [3] Numerical analysis of a dual-phase-lag model involving two temperatures
    Bazarra, Noelia
    Fernandez, Jose R.
    Magana, Antonio
    Quintanilla, Ramon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2759 - 2771
  • [4] Numerical analysis for dual-phase-lag heat conduction in layered films
    Liu, KC
    Cheng, PJ
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2006, 49 (06) : 589 - 606
  • [5] Exponential stability and numerical analysis of Timoshenko system with dual-phase-lag thermoelasticity
    Bouraoui, Hamed Abderrahmane
    Djebabla, Abdelhak
    Sahari, Mohamed Lamine
    Boulaaras, Salah
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (02)
  • [6] Unconditional Stability of a Numerical Method for the Dual-Phase-Lag Equation
    Castro, M. A.
    Martin, J. A.
    Rodriguez, F.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [7] On the dual-phase-lag thermoelasticity theory
    Ahmed S. El-Karamany
    Magdy A. Ezzat
    Meccanica, 2014, 49 : 79 - 89
  • [8] On the dual-phase-lag thermoelasticity theory
    El-Karamany, Ahmed S.
    Ezzat, Magdy A.
    MECCANICA, 2014, 49 (01) : 79 - 89
  • [9] Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators
    Zhou, Hongyue
    Li, Pu
    Zuo, Wanli
    Fang, Yuming
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 31 - 51
  • [10] A Numerical-Analytical Method for Time-Fractional Dual-Phase-Lag Models of Heat Transfer
    Lin, Ji
    Reutskiy, Sergiy
    Feng, Wenjie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (03) : 666 - 702