Efficient Quadrature Rules for Numerical Integration Based on Linear Legendre Multi-Wavelets

被引:0
|
作者
Alimin, Nur Neesha [1 ]
Rasedee, Ahmad Fadly Nurullah [3 ,4 ]
Sathar, Mohammad Hasan Abdul [2 ,3 ]
Ahmedov, Anvarjon A. [5 ]
Asbullah, Muhammad Asyraf [2 ,3 ]
机构
[1] Univ Putra Malaysia, Dept Math, Fac Sci, Upm Serdang 43400, Malaysia
[2] Putra Univ Malaysia, Ctr Fdn Studies Agr Sci, Serdang 43400, Selangor, Malaysia
[3] Putra Univ Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
[4] Univ Sains Islam Malaysia, Fac Econ & Muamalat, Nilai 78100, Negeri Sembilan, Malaysia
[5] Univ Malaysia Pahang, Ctr Math Sci, Gambang 26300, Pahang, Malaysia
关键词
EQUATIONS;
D O I
10.1088/1742-6596/1366/1/012092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, generalize solution based on linear Legendre multi-wavelets are proposed for single, double and triple integrals with variable limits. To obtain the numerical approximations for integrals, an algorithm with the properties of linear Legendre multi-wavelets are applied. The main benefits of this method are its simple applicable and efficient. Furthermore, the error analysis for single, double and triple integrals is worked out to show the efficiency of the method. Numerical examples for the integrals are conducted by using linear Legendre multi-wavelets in order to validate the error estimation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Numerical Integration Based on Linear Legendre Multi Wavelets
    Sathar, Mohammad Hasan Abdul
    Rasedee, Ahmad Fadly Nurullah
    Ahmedov, Anvarjon A.
    Asbullah, Muhammad Asyraf
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
  • [2] Numerical evaluation of the Hankel transform by using linear Legendre multi-wavelets
    Singh, Vineet K.
    Singh, Om R.
    Pandey, Rajesh K.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (06) : 424 - 429
  • [3] Legendre multi-wavelets collocation method for numerical solution of linear and nonlinear integral equations
    Asif, Muhammad
    Khan, Imran
    Haider, Nadeem
    Al-Mdallal, Qasem
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5099 - 5109
  • [4] Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets
    Shang, Xufeng
    Han, Danfu
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (02) : 440 - 444
  • [5] Nee-structured Legendre multi-wavelets
    Pogossova, E
    Egiazarian, K
    Gotchev, A
    Astola, J
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 291 - 300
  • [6] Quadrature rules for numerical integration based on Haar wavelets and hybrid functions
    Aziz, Imran
    Siraj-ul-Islam
    Khan, Wajid
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2770 - 2781
  • [7] LINEAR LEGENDRE MULTI-WAVELETS METHODS FOR SOLVING SYSTEMS OF FREDHOLM INTEGRAL EQUATIONS
    Najafi, H. Saberi
    Aminikhah, H.
    Edalatpanah, S. A.
    MATHEMATICAL REPORTS, 2016, 18 (01):
  • [8] Interval Legendre Multi-Wavelets Method for Differential Equations
    Dang, Xiaomin
    Zhao, Fengqun
    Bai, Xue
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 85 - 88
  • [9] On a new method for finding numerical solutions to integro-differential equations based on Legendre multi-wavelets collocation
    Khan, Imran
    Asif, Muhammad
    Amin, Rohul
    Al-Mdallal, Qasem
    Jarad, Fahd
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (04) : 3037 - 3049
  • [10] Application of linear Legendre multi-wavelets collocation method for solution of fourth order boundary value problems
    Khan, Imran
    Ansari, Khursheed J.
    Amin, Rohul
    Farheen, Hifza
    ENGINEERING WITH COMPUTERS, 2024,