On the comparison of the spaces L1 BV (Rn) and BV (Rn)

被引:0
|
作者
Soeharyadi, Y [1 ]
机构
[1] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
L-1-variation; variation; total variation; essential variation; conservation laws; perturbed conservation laws; m-dissipative operator; invariant set; Favard class;
D O I
10.1090/S0002-9939-01-06044-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of L-1-variation and the space (LBV)-B-1 arise in the study of regularity properties of solutions to perturbed conservation laws. In this article we show that this notion is equivalent to variation in the regular sense, and therefore the space (LBV)-B-1 is the same as the space BV in the sense of Cesari-Tonelli. We also point out some connection between the space (LBV)-B-1 and the Favard classes for translation semigroups.
引用
收藏
页码:405 / 412
页数:8
相关论文
共 50 条
  • [1] BV-packing integral in Rn
    Kuncova, Kristyna
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (07) : 1352 - 1377
  • [2] Semi-Valuations on BV(Rn)
    Wang, Tuo
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (05) : 1447 - 1465
  • [3] The minimal affine total variation on BV (Rn)
    Dai, Jin
    Mou, Shuang
    ADVANCES IN APPLIED MATHEMATICS, 2023, 147
  • [4] Some sharp Sobolev inequalities on BV (Rn)
    Dai, Jin
    Mou, Shuang
    AIMS MATHEMATICS, 2022, 7 (09): : 16851 - 16868
  • [5] The affine Sobolev-Zhang inequality on BV (Rn)
    Wang, Tuo
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2457 - 2473
  • [6] An Odd Rearrangement of L1(Rn)
    Wang, Zheng
    Chen, Jiecheng
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [7] The atomic decomposition in L1(Rn)
    Abu-Shammala, Wael
    Torchinsky, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2839 - 2843
  • [8] Differentiating maps into L1, and the geometry of BV functions
    Cheeger, Jeff
    Kleiner, Bruce
    ANNALS OF MATHEMATICS, 2010, 171 (02) : 1347 - 1385
  • [9] The chromatic number of the space (Rn, l1)
    Gorskaya, E. S.
    Mitricheva, I. M.
    SBORNIK MATHEMATICS, 2018, 209 (10) : 1445 - 1462
  • [10] MONOTONE PERTURBATIONS OF THE LAPLACIAN IN L1(RN)
    VAZQUEZ, JL
    ISRAEL JOURNAL OF MATHEMATICS, 1982, 43 (03) : 255 - 272