The recursive nature of cominuscule Schubert calculus

被引:12
|
作者
Purbhoo, Kevin [1 ]
Sottile, Frank [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
horn inequalities; Schubert calculus; cominuscule flag variety; Grassmannian; Littlewood-Richardson rule;
D O I
10.1016/j.aim.2007.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The necessary and sufficient Horn inequalities which determine the non-vanishing Littlewood-Richardson coefficients in the cohomology of a Grassmannian are recursive in that they are naturally indexed by non-vanishing Littlewood-Richardson coefficients on smaller Grassmannians. We show how non-vanishing in the Schubert calculus for cominuscule flag varieties is similarly recursive. For these varieties, the non-vanishing of products of Schubert classes is controlled by the non-vanishing products on smaller cominuscule flag varieties. In particular, we show that the lists of Schubert classes whose product is non-zero naturally correspond to the integer points in the feasibility polytope, which is defined by inequalities coming from non-vanishing products of Schubert classes on smaller cominuscule flag varieties. While the Grassmannian is cominuscule, our necessary and sufficient inequalities are different than the classical Horn inequalities. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1962 / 2004
页数:43
相关论文
共 50 条
  • [1] COMINUSCULE POINTS AND SCHUBERT VARIETIES
    Graham, William
    Kreiman, Victor
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) : 2519 - 2548
  • [2] Singular loci of cominuscule Schubert varieties
    Robles, C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (04) : 745 - 759
  • [3] The isomorphism problem for cominuscule Schubert varieties
    Richmond, Edward
    Tarigradschi, Mihail
    Xu, Weihong
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [4] Schur flexibility of cominuscule Schubert varieties
    Robles, C.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (05) : 979 - 1013
  • [5] The Nash blow-up of a cominuscule Schubert variety
    Richmond, Edward
    Slofstra, William
    Woo, Alexander
    JOURNAL OF ALGEBRA, 2020, 559 : 580 - 600
  • [6] SCHUBERT CALCULUS
    KLEIMAN, SL
    LAKSOV, D
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (10): : 1061 - 1082
  • [7] SOERGEL CALCULUS AND SCHUBERT CALCULUS
    He, Xuhua
    Williamson, Geordie
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (03): : 317 - 350
  • [8] Mather classes and conormal spaces of Schubert varieties in cominuscule spaces
    Mihalcea, Leonardo C.
    Singh, Rahul
    ALGEBRAIC GEOMETRY, 2023, 10 (05): : 554 - 575
  • [9] ARITHMETIC SCHUBERT CALCULUS
    MAILLOT, V
    DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) : 195 - 221
  • [10] Quantum Schubert calculus
    Bertram, A
    ADVANCES IN MATHEMATICS, 1997, 128 (02) : 289 - 305