Hyperbolic Second Order Equations with Non-Regular Time Dependent Coefficients

被引:49
|
作者
Garetto, Claudia [1 ]
Ruzhansky, Michael [2 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
CAUCHY-PROBLEM; WELL-POSEDNESS; OPERATORS; SYSTEMS;
D O I
10.1007/s00205-014-0830-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study weakly hyperbolic second order equations with time dependent irregular coefficients. This means assuming that the coefficients are less regular than Holder. The characteristic roots are also allowed to have multiplicities. For such equations, we describe the notion of a 'very weak solution' adapted to the type of solutions that exist for regular coefficients. The construction is based on considering Friedrichs-type mollifiers of coefficients and corresponding classical solutions, and their quantitative behaviour in the regularising parameter. We show that even for distributional coefficients, the Cauchy problem does have a very weak solution, and that this notion leads to classical or to ultradistributional solutions under conditions when such solutions also exist. In concrete applications, the dependence on the regularising parameter can be traced explicitly.
引用
收藏
页码:113 / 154
页数:42
相关论文
共 50 条