Aerodynamic Parameter Identification for an Airborne Wind Energy Pumping System

被引:7
|
作者
Licitra, G. [1 ,3 ,4 ]
Williams, P. [1 ]
Gillis, J. [2 ]
Ghandchi, S. [1 ]
Sieberling, S. [1 ]
Ruiterkamp, R. [1 ]
Diehl, M. [3 ,4 ]
机构
[1] Ampyx Power BV, The Hague, Netherlands
[2] Katholieke Univ Leuven, Leuven, Belgium
[3] Univ Freiburg, Dept Microsyst Engn, Freiburg, Germany
[4] Univ Freiburg, Dept Math, Freiburg, Germany
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Airborne Wind Energy; Model-Based Parameter Estimation; AIRCRAFT;
D O I
10.1016/j.ifacol.2017.08.1038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Airborne Wind Energy refers to systems capable of harvesting energy from the wind by flying crosswind patterns with a tethered aircraft. Tuning and validation of flight controllers for AWE systems depends on the availability of reasonable a priori models. In this paper, aerodynamic coefficients are estimated from data gathered from flight test campaign using an efficient multiple experiments model based parameter estimation algorithm. Data fitting is performed using mathematical models based on full six degree of freedom aircraft equations of motion. Several theoretical and practical aspects as well as limitations are highlighted. Finally, both model selection and estimation results are assessed by means of R-squared value and confidence ellipsoids. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11951 / 11958
页数:8
相关论文
共 50 条
  • [1] Aerodynamic model identification of an autonomous aircraft for airborne wind energy
    Licitra, Giovanni
    Buerger, Adrian
    Williams, Paul
    Ruiterkamp, Richard
    Diehl, Moritz
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (03): : 422 - 447
  • [2] On-line Trajectory Optimization in Parameter Space for Automatic Pumping Cycle of Airborne Wind Energy System
    Han, Kwang-Hee
    Whang, Ick-Ho
    Ra, Won-Sang
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (06) : 3687 - 3697
  • [3] Aerodynamic analysis of Ampyx's airborne wind energy system
    Vimalakanthan, K.
    Caboni, M.
    Schepers, J. G.
    Pechenik, E.
    Williams, P.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [4] Viability Assessment of a Rigid Wing Airborne Wind Energy Pumping System
    Licitra, Giovanni
    Koenemann, Jonas
    Horn, Greg
    Williams, Paul
    Ruiterkamp, Richard
    Diehl, Moritz
    2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2017, : 452 - 458
  • [5] Performance assessment of a rigid wing Airborne Wind Energy pumping system
    Licitra, G.
    Koenemann, J.
    Buerger, A.
    Williams, P.
    Ruiterkamp, R.
    Diehl, M.
    ENERGY, 2019, 173 : 569 - 585
  • [6] Control of a rigid wing pumping Airborne Wind Energy system in all operational phases
    Todeschini, Davide
    Fagiano, Lorenzo
    Micheli, Claudio
    Cattano, Aldo
    CONTROL ENGINEERING PRACTICE, 2021, 111
  • [7] Wake characteristics of pumping mode airborne wind energy systems
    Haas, T.
    De Schutter, J.
    Diehl, M.
    Meyers, J.
    WAKE CONFERENCE, 2019, 1256
  • [8] Vortex model of the aerodynamic wake of airborne wind energy systems
    Trevisi, Filippo
    Riboldi, Carlo E. D.
    Croce, Alessandro
    WIND ENERGY SCIENCE, 2023, 8 (06) : 999 - 1016
  • [9] AIRBORNE WIND ENERGY SYSTEM Composite Production Methods for a Cost Effective Airborne Wind Energy System
    Fagan, Edward M.
    Engelen, Sebastiaan
    Bonnin, Vincent
    Kruijff, Michiel
    SAMPE JOURNAL, 2021, 57 (03) : 26 - 34
  • [10] Effect of the Electrical Energy Conversion on Optimal Cycles for Pumping Airborne Wind Energy
    Stuyts, Jeroen
    Horn, Greg
    Vandermeulen, Wouter
    Driesen, Johan
    Diehl, Moritz
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (01) : 2 - 10