A classification of one-dimensional cellular automata using infinite computations

被引:31
|
作者
D'Alotto, Louis [1 ,2 ]
机构
[1] CUNY York Coll, Dept Math & Comp Sci, Jamaica, NY 11451 USA
[2] CUNY Grad Ctr, Doctoral Program Comp Sci, New York, NY 10016 USA
关键词
Cellular automata; Infinite Unit Axiom; Grossone; Metric; Dynamical systems; TURING-MACHINES; GROSSONE;
D O I
10.1016/j.amc.2014.06.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see Sergeyev (2003, 2009, 2013, 2008, 2008) [15-19]), to classify one-dimensional cellular automata whereby each class corresponds to a different and distinct dynamical behavior. The forward dynamics of a cellular automaton map are studied via defined classes. Using these classes, along with the Infinite Unit Axiom and grossone, the number of configurations that equal those of a given configuration, in some finite central window, under an automaton map can now be computed. Hence a classification scheme for one-dimensional cellular automata is developed, whereby determination in a particular class is dependent on the number of elements in their respective forward iteration classes. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条