DeBot: A deep learning-based model for bot detection in industrial internet-of-things

被引:21
|
作者
Jayalaxmi, P. L. S. [1 ]
Kumar, Gulshan [1 ,2 ]
Saha, Rahul [1 ,2 ]
Conti, Mauro [2 ]
Kim, Tai-hoon [3 ]
Thomas, Reji [4 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
[2] Univ Padua, Dept Math, I-35131 Padua, Italy
[3] Global Campus Konkuk Univ, 268, Chungwon Daero, Chungju 27478, South Korea
[4] Lovely Profess Univ, Div Res & Dev, Phagwara, Punjab, India
基金
欧盟地平线“2020”;
关键词
IIoT; Security; Bot; Deeplearning; Features; Detection;
D O I
10.1016/j.compeleceng.2022.108214
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we show a deep learning model for bot detection, named as DeBot, for industrial network traffic. DeBot uses a novel Cascade Forward Back Propagation Neural Network (CFBPNN) model with a subset of features using the Correlation-based Feature Selection (CFS) technique. A time series-based Nonlinear Auto-regressive Network with eXogenous inputs (NARX) technique analyzes the factors having a higher impact on the target variable and predict the behavioral pattern. To the best of our knowledge, we pioneer the use of optimal feature selection and integration with the cascading model of deep learning in bot detection of IIoTs. We conduct a thorough set of experiments on five popular bot datasets: NF-UNSW-NB15, NF-ToN-IoT, NF-BoT-IoT, NF-CSE-CIC-IDS2018, and ToN-IoT-Windows. We compare CFBPNN with other existing neural network models. We observe that CFBPNN in DeBot shows 100% accuracy in all the datasets with subset evaluation and obtains optimum F1-score and zero precision.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] PIGNUS: A Deep Learning model for IDS in industrial internet-of-things
    Jayalaxmi, P. L. S.
    Saha, Rahul
    Kumar, Gulshan
    Alazab, Mamoun
    Conti, Mauro
    Cheng, Xiaochun
    COMPUTERS & SECURITY, 2023, 132
  • [2] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [3] Deep Learning-Based Reliable Routing Attack Detection Mechanism for Industrial Internet of Things
    Nayak, Sharmistha
    Ahmed, Nurzaman
    Misra, Sudip
    AD HOC NETWORKS, 2021, 123
  • [4] A Deep Learning-Based DDoS Detection Framework for Internet of Things
    Ma, Li
    Chai, Ying
    Cui, Lei
    Ma, Dongchao
    Fu, Yingxun
    Xiao, Ailing
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [5] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [6] Deep reinforcement learning-based resource reservation algorithm for emergency Internet-of-things slice
    Sun G.
    Ou R.
    Liu G.
    1600, Editorial Board of Journal on Communications (41): : 8 - 20
  • [7] Machine and deep learning amalgamation for feature extraction in Industrial Internet-of-Things
    Jayalaxmi, P. L. S.
    Saha, Rahul
    Kumar, Gulshan
    Kim, Tai-Hoon
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 97
  • [8] Deep reinforcement learning-based resource reservation method for Power Emergency Internet-of-things Slice
    Wen, Mingshi
    Hai, Tianxiang
    Zhang, Li
    Hao, Jiakai
    Zhao, Guanghuai
    Zhen, Zerui
    Zhao, Yikun
    Feng, Lei
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 63 - 67
  • [9] Leveraging sparrow search optimization with deep learning-based cybersecurity detection in industrial internet of things environment
    Alrayes, Fatma S.
    Nemri, Nadhem
    Mansouri, Wahida
    Alshuhail, Asma
    Almukadi, Wafa Sulaiman
    Al-Sharafi, Ali M.
    Aljabri, Jawhara
    Nafie, Faisal Mohammed
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 121 : 128 - 137
  • [10] Industrial Internet-of-Things Security Enhanced With Deep Learning Approaches for Smart Cities
    Magaia, Naercio
    Fonseca, Ramon
    Muhammad, Khan
    Segundo, Afonso H. Fontes N.
    Lira Neto, Aloisio Vieira
    de Albuquerque, Victor Hugo C.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 6393 - 6405