Variable Projection Applied to Block Term Decomposition of Higher-Order Tensors

被引:2
|
作者
Olikier, Guillaume [1 ]
Absil, P. -A. [1 ]
De lathauwer, Lieven [2 ,3 ]
机构
[1] Catholic Univ Louvain, ICTEAM Inst, Louvain La Neuve, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT, Leuven, Belgium
[3] Katholieke Univ Leuven, Campus Kortrijk, Kortrijk, Belgium
基金
欧洲研究理事会;
关键词
Numerical multilinear algebra; Higher-order tensor; Block term decomposition; Variable projection method; Riemannian manifold; Riemannian optimization; APPROXIMATION; SEPARATION;
D O I
10.1007/978-3-319-93764-9_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Higher-order tensors have become popular in many areas of applied mathematics such as statistics, scientific computing, signal processing or machine learning, notably thanks to the many possible ways of decomposing a tensor. In this paper, we focus on the best approximation in the least-squares sense of a higher-order tensor by a block term decomposition. Using variable projection, we express the tensor approximation problem as a minimization of a cost function on a Cartesian product of Stiefel manifolds. The effect of variable projection on the Riemannian gradient algorithm is studied through numerical experiments.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [1] HIGHER-ORDER TENSORS
    MORGAN, AJA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (02) : 355 - 379
  • [2] Higher-Order Block Term Decomposition for Spatially Folded fMRI Data
    Chatzichristos, Christos
    Kofidis, Eleftherios
    Kopsinis, Yiannis
    Moreno, Manuel Morante
    Theodoridis, Sergios
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 3 - 15
  • [3] A Blind Block Term Decomposition of High Order Tensors
    Cai, Yunfeng
    Li, Ping
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 6868 - 6876
  • [4] HIGHER-ORDER TENSORS, STRINGS AND NEW TENSORS
    CAREY, AL
    MURRAY, MK
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879): : 423 - 432
  • [5] Fast multilinear Singular Value Decomposition for higher-order Hankel tensors
    Boizard, Maxime
    Boyer, Remy
    Favier, Gerard
    Larzabal, Pascal
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 437 - 440
  • [6] Model-Driven Sparse CP Decomposition for Higher-Order Tensors
    Li, Jiajia
    Choi, Jee
    Perros, Ioakeim
    Sun, Jimeng
    Vuduc, Richard
    2017 31ST IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2017, : 1048 - 1057
  • [7] Decomposition of higher-order spectra applied to spike sorting
    Kovach, Christopher
    Carvalho Moreira, Joao Pedro
    Berger, Joel
    Howard, Matthew
    Gwilliams, Laura
    Fallah, Aria
    Comstock, Lindy
    Mendes, Eduardo
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S91 - S91
  • [8] Decomposition of higher-order spectra applied to spike sorting
    Kovach, Christopher
    Carvalho Moreira, Joao Pedro
    Berger, Joel
    Howard, Matthew
    Gwilliams, Laura
    Fallah, Aria
    Comstock, Lindy
    Mendes, Eduardo
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S91 - S91
  • [9] Multiscale Analysis for Higher-order Tensors
    Ozdemir, Alp
    Zare, Ali
    Iwen, Mark A.
    Aviyente, Selin
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [10] NUCLEAR NORM OF HIGHER-ORDER TENSORS
    Friedland, Shmuel
    Lim, Lek-Heng
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1255 - 1281