Gravitational-wave parameter inference using Deep Learning

被引:1
|
作者
Alvares, Joao D. [1 ]
Font, Jose A. [2 ,3 ]
Freitas, Felipe F. [4 ,5 ]
Freitas, Osvaldo G. [1 ]
Morais, Antonio P. [4 ,5 ]
Nunes, Solange [1 ]
Onofre, Antonio [1 ]
Torres-Forne, Alejandro [2 ,6 ]
机构
[1] Univ Minho, Ctr Fis, Univ Minho & Porto CF UM UP, P-4710057 Braga, Portugal
[2] Univ Valencia, Dept Astron & Astrofis, Dr Moliner 50, Burjassot 46100, Valencia, Spain
[3] Univ Valencia, Observ Astron, Catedratico Jose Beltran 2, Paterna 46980, Valencia, Spain
[4] Univ Aveiro, Dept Fis, Campus Santiago, P-3810183 Aveiro, Portugal
[5] Ctr Res & Dev Math & Applicat CIDMA, Campus Santiago, P-3810183 Aveiro, Portugal
[6] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
基金
欧盟地平线“2020”;
关键词
GW astronomy; convolutional neural networks; spectrogram classification; bayesian neural networks;
D O I
10.1109/CBMI50038.2021.9461893
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore machine learning methods to detect gravitational waves (GW) from binary black hole (BBH) mergers using deep learning (DL) algorithms. The DL networks are trained with gravitational waveforms obtained from BBH mergers with component masses randomly sampled in the range from 5 to 100 solar masses and luminosity distances from 100Mpc to, at least, 2000Mpc. The GW signal waveforms are injected in public data from the O2 run of the Advanced LIGO and Advanced Virgo detectors, in time windows that do not coincide with those of known detected signals, and the data from each detector in the Advanced LIGO and Advanced Virgo network is combined into a unique RGB image. We show that a classifier network can be trained in order to detect the presence of GW signal with high accuracy. Furthermore, we train a regression network to perform parameter inference on BBH spectrogram data. Without significant optimization of our algorithms we manage to corroborate most of the BBH detections in the GWTC-1 and GWTC-2 catalogs, and obtain parameter inference results that are mostly consistent with published results by the LIGO-Virgo Collaboration in GWTC-1. In particular, our predictions for the chirp mass are compatible (up to 3 sigma) with the official values for 90% of events.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 50 条
  • [1] Exploring gravitational-wave detection and parameter inference using deep learning methods
    Alvares, Joao D.
    Font, Jose A.
    Freitas, Felipe F.
    Freitas, Osvaldo G.
    Morais, Antonio P.
    Nunes, Solange
    Onofre, Antonio
    Torres-Forne, Alejandro
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (15)
  • [2] Gravitational-Wave Parameter Inference with the Newman-Penrose Scalar
    Bustillo J.C.
    Wong I.C.F.
    Sanchis-Gual N.
    Leong S.H.W.
    Torres-Forné A.
    Chandra K.
    Font J.A.
    Herdeiro C.
    Radu E.
    Li T.G.F.
    Physical Review X, 2023, 13 (04)
  • [3] Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
    Chua, Alvin J. K.
    Vallisneri, Michele
    PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [4] Reconstructing the Hubble Parameter with Future Gravitational-wave Missions Using Machine Learning
    Mukherjee, Purba
    Shah, Rahul
    Bhaumik, Arko
    Pal, Supratik
    ASTROPHYSICAL JOURNAL, 2024, 960 (01):
  • [5] Deep learning and Bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers
    Mould, Matthew
    Gerosa, Davide
    Taylor, Stephen R.
    PHYSICAL REVIEW D, 2022, 106 (10)
  • [6] Training strategies for deep learning gravitational-wave searches
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Ohme, Frank
    Bruegmann, Bernd
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [7] Parallelized inference for gravitational-wave astronomy
    Talbot, Colm
    Smith, Rory
    Thrane, Eric
    Poole, Gregory B.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [8] Multimessenger parameter inference of gravitational-wave and electromagnetic observations of white dwarf binaries
    Johnson, Peyton T.
    Coughlin, Michael W.
    Hamilton, Ashlie
    Bustamante-Rosell, Maria Jose
    Ashton, Gregory
    Corey, Samuel
    Kupfer, Thomas
    Littenberg, Tyson B.
    Reed, Draco
    Zimmerman, Aaron
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (03) : 4121 - 4128
  • [9] Improved deep learning techniques in gravitational-wave data analysis
    Xia, Heming
    Shao, Lijing
    Zhao, Junjie
    Cao, Zhoujian
    PHYSICAL REVIEW D, 2021, 103 (02)
  • [10] Noise reduction in gravitational-wave data via deep learning
    Ormiston, Rich
    Tri Nguyen
    Coughlin, Michael
    Adhikari, Rana X.
    Katsavounidis, Erik
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):