A characterization of singular Schrodinger operators on the half-line

被引:2
|
作者
Scandone, Raffaele [1 ]
Luperi Baglini, Lorenzo [2 ]
Simonov, Kyrylo [3 ]
机构
[1] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[3] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2021年 / 64卷 / 04期
基金
奥地利科学基金会;
关键词
Schrodinger operators; singular perturbations; point interactions; nonstandard analysis; POINT INTERACTIONS; QUANTUM-MECHANICS; PARTICLE; PERTURBATIONS;
D O I
10.4153/S0008439520000958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrodinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space R-3, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighborhood of the origin.
引用
收藏
页码:923 / 941
页数:19
相关论文
共 50 条