Identification of kinetically hot residues in proteins

被引:111
作者
Demirel, MC
Atilgan, AR
Jernigan, RL
Erman, B
Bahar, I
机构
[1] Bogazici Univ, Polymer Res Ctr, TR-80815 Bebek, Istanbul, Turkey
[2] TUBITAK Adv Polymer Mat Res Ctr, TR-80815 Bebek, Istanbul, Turkey
[3] NCI, Mol Struct Sect, Lab Expt & Computat Biol, Div Basic Sci,NIH, Bethesda, MD 20892 USA
[4] Sabanci Univ, TR-80745 Sabanci Ctr, Turkey
关键词
CheY; chymotrypsin inhibitor; conserved residues; cytochrome c; folding pathway; hot residues; thermal fluctuations; vibrational dynamics;
D O I
10.1002/pro.5560071205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed.
引用
收藏
页码:2522 / 2532
页数:11
相关论文
共 61 条
[1]   SPECIFIC NUCLEUS AS THE TRANSITION-STATE FOR PROTEIN-FOLDING - EVIDENCE FROM THE LATTICE MODEL [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
BIOCHEMISTRY, 1994, 33 (33) :10026-10036
[2]   LOCAL MOMENTS AND LOCALIZED STATES [J].
ANDERSON, PW .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :191-201
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   CRYSTALLIZATION AND X-RAY STRUCTURE DETERMINATION OF CYTOCHROME-C(2) FROM RHODOBACTER-SPHAEROIDES IN 3 CRYSTAL FORMS [J].
AXELROD, HL ;
FEHER, G ;
ALLEN, JP ;
CHIRINO, AJ ;
DAY, MW ;
HSU, BT ;
REES, DC .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :596-602
[5]   Vibrational dynamics of folded proteins: Significance of slow and fast motions in relation to function and stability [J].
Bahar, I ;
Atilgan, AR ;
Demirel, MC ;
Erman, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2733-2736
[6]   Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation [J].
Bahar, I ;
Jernigan, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (01) :195-214
[7]   Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model [J].
Bahar, I ;
Wallqvist, A ;
Covell, DG ;
Jernigan, RL .
BIOCHEMISTRY, 1998, 37 (04) :1067-1075
[8]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[9]  
BAI Y, 1995, SCIENCE, V262, P192
[10]   X-RAY STRUCTURE OF THE CYTOCHROME-C(2) ISOLATED FROM PARACOCCUS-DENITRIFICANS REFINED TO 1.7-ANGSTROM RESOLUTION [J].
BENNING, MM ;
MEYER, TE ;
HOLDEN, HM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (02) :460-466