Efficient Subspace Approximation Algorithms

被引:6
|
作者
Shyamalkumar, Nariankadu D. [2 ]
Varadarajan, Kasturi [1 ]
机构
[1] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
关键词
Dimension reduction; Low-rank approximation; Shape fitting; COMPUTATIONAL-COMPLEXITY; J-RADII; OPTIMIZATION; POLYTOPES; LOCATION;
D O I
10.1007/s00454-011-9384-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of fitting a subspace of a specified dimension k to a set P of n points in a"e (d) . The fit of a subspace F is measured by the L (tau) norm, that is, it is defined as the tau-root of the sum of the tau th powers of the Euclidean distances of the points in P from F, for some tau a parts per thousand yen1. Our main result is a randomized algorithm that takes as input P, k, and a parameter 0 < epsilon < 1; runs in nd . 2(O(tau k2/epsilon log2 k/epsilon)) time, and returns a k-subspace that with probability at least 1/2 has a fit that is at most (1+epsilon) times that of the optimal k-subspace.
引用
收藏
页码:44 / 63
页数:20
相关论文
共 50 条
  • [1] Efficient Subspace Approximation Algorithms
    Nariankadu D. Shyamalkumar
    Kasturi Varadarajan
    Discrete & Computational Geometry, 2012, 47 : 44 - 63
  • [2] Efficient Subspace Approximation Algorithms
    Shyamalkumar, Nariankadu D.
    Varadarajan, Kasturi
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 532 - +
  • [3] Algorithms and Hardness for Subspace Approximation
    Deshpande, Amit
    Tulsiani, Madhur
    Vishnoi, Nisheeth K.
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 482 - 496
  • [4] A class of subspace tracking algorithms based on approximation of the noise-subspace
    Gustafsson, T
    MacInnes, CS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (11) : 3231 - 3235
  • [5] Subspace Approximation of Face Recognition Algorithms: An Empirical Study
    Mohanty, Pranab
    Sarkar, Sudeep
    Kasturi, Rangachar
    Phillips, P. Jonathon
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2008, 3 (04) : 734 - 748
  • [6] Asymptotic convergence analysis of the projection approximation subspace tracking algorithms
    Yang, B
    SIGNAL PROCESSING, 1996, 50 (1-2) : 123 - 136
  • [7] APPROXIMATION RESULTS AND SUBSPACE CORRECTION ALGORITHMS FOR IMPLICIT VARIATIONAL INEQUALITIES
    Badea, Lori
    Cocou, Marius
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (06): : 1507 - 1524
  • [8] Efficient approximation algorithms for the achromatic number
    Krysta, P
    Lorys, K
    ALGORITHMS - ESA'99, 1999, 1643 : 402 - 413
  • [9] Efficient Approximation Algorithms for Spanning Centrality
    Zhang, Shiqi
    Yang, Renchi
    Tang, Jing
    Xiao, Xiaokui
    Tang, Bo
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3386 - 3395
  • [10] Efficient approximation algorithms for the achromatic number
    Krysta, Piotr
    Lorys, Krzysztof
    THEORETICAL COMPUTER SCIENCE, 2006, 361 (2-3) : 150 - 171