ON A VARIANT OF THE MAXIMUM PRINCIPLE INVOLVING RADIAL p-LAPLACIAN WITH APPLICATIONS TO NONLINEAR EIGENVALUE PROBLEMS AND NONEXISTENCE RESULTS

被引:0
|
作者
Adamowicz, Tomasz [1 ]
Kalamajska, Agnieszka [2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
关键词
Maximum principles; radial solutions; p-Laplace equation; singular PDE's; elliptic equations; QUASI-LINEAR EQUATIONS; DIFFERENTIAL-EQUATIONS; NONNEGATIVE SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; GROUND-STATES; SYMMETRY; OSCILLATION; BIFURCATION; UNIQUENESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the variant of maximum principle for radial solutions of p-harmonic equation -a Delta(p)(w) = phi(w). As a consequence of this result we prove monotonicity of constant sign solutions, analyze the support of the solutions and study their oscillations. The results axe applied to various type nonlinear eigenvalue problems and nonexistence theorems.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Maximum principles and nonexistence results for radial solutions to equations involving p-Laplacian
    Adamowicz, Tomasz
    Katamajska, Agnieszka
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (13) : 1618 - 1627
  • [2] MULTIPLICITY RESULTS FOR DOUBLE EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN
    Lisei, Hannelore
    Morosanu, Gheorghe
    Varga, Csaba
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1095 - 1110
  • [3] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [4] Remarks on the strong maximum principle involving p-Laplacian
    Liu, Xiaojing
    Horiuchi, Toshio
    HIROSHIMA MATHEMATICAL JOURNAL, 2016, 46 (03) : 311 - 331
  • [5] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [6] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha H.
    Chakrone O.
    Tsouli N.
    Journal of Nonlinear Functional Analysis, 2022, 2022
  • [7] OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE p-LAPLACIAN
    Cuccu, Fabrizio
    Emamizadeh, Behrouz
    Porru, Giovanni
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1677 - 1687
  • [8] SOME REMARKS ON THE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN
    Pielichowski, Waclaw
    OPUSCULA MATHEMATICA, 2008, 28 (04) : 561 - 566
  • [9] Eigenvalue problems for the p-Laplacian
    Lê, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [10] EXISTENCE, NONEXISTENCE AND ANTIMAXIMUM PRINCIPLE FOR THE P-LAPLACIAN
    FLECKINGER, J
    GOSSEZ, JP
    TAKAC, P
    DETHELIN, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (06): : 731 - 734