A gradient-free distributed optimization method for convex sum of nonconvex cost functions

被引:2
|
作者
Pang, Yipeng [1 ]
Hu, Guoqiang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
distributed optimization; gradient-free optimization; multi-agent system; ALGORITHM; CONSENSUS;
D O I
10.1002/rnc.6266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a special type of distributed optimization problems, where the summation of agents' local cost functions (i.e., global cost function) is convex, but each individual can be nonconvex. Unlike most distributed optimization algorithms by taking the advantages of gradient, the considered problem is allowed to be nonsmooth, and the gradient information is unknown to the agents. To solve the problem, a Gaussian-smoothing technique is introduced and a gradient-free method is proposed. We prove that each agent's iterate approximately converges to the optimal solution both with probability 1 and in mean, and provide an upper bound on the optimality gap, characterized by the difference between the functional value of the iterate and the optimal value. The performance of the proposed algorithm is demonstrated by a numerical example and an application in privacy enhancement.
引用
收藏
页码:8086 / 8101
页数:16
相关论文
共 50 条
  • [1] Random gradient-free method for online distributed optimization with strongly pseudoconvex cost functions
    Yan, Xiaoxi
    Li, Cheng
    Lu, Kaihong
    Xu, Hang
    CONTROL THEORY AND TECHNOLOGY, 2024, 22 (01) : 14 - 24
  • [2] Random gradient-free method for online distributed optimization with strongly pseudoconvex cost functions
    Xiaoxi Yan
    Cheng Li
    Kaihong Lu
    Hang Xu
    Control Theory and Technology, 2024, 22 : 14 - 24
  • [3] Distributed Nonconvex Optimization via Bounded Gradient-Free Inputs
    Du, Yong
    Chen, Fei
    Xiang, Linying
    Feng, Gang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025,
  • [4] Gradient-Free Method for Heavily Constrained Nonconvex Optimization
    Shi, Wanli
    Gao, Hongchang
    Gu, Bin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Gradient-free algorithms for distributed online convex optimization
    Liu, Yuhang
    Zhao, Wenxiao
    Dong, Daoyi
    ASIAN JOURNAL OF CONTROL, 2023, 25 (04) : 2451 - 2468
  • [6] Gradient-free method for nonsmooth distributed optimization
    Li, Jueyou
    Wu, Changzhi
    Wu, Zhiyou
    Long, Qiang
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (02) : 325 - 340
  • [7] Gradient-free method for nonsmooth distributed optimization
    Jueyou Li
    Changzhi Wu
    Zhiyou Wu
    Qiang Long
    Journal of Global Optimization, 2015, 61 : 325 - 340
  • [8] Distributed Nonconvex Optimization: Gradient-Free Iterations and ε-Globally Optimal Solution
    He, Zhiyu
    He, Jianping
    Chen, Cailian
    Guan, Xinping
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (04): : 2239 - 2251
  • [9] Randomized Gradient-Free Distributed Online Optimization with Time-Varying Cost Functions
    Pang, Yipeng
    Hu, Guoqiang
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4910 - 4915
  • [10] INCREMENTAL GRADIENT-FREE METHOD FOR NONSMOOTH DISTRIBUTED OPTIMIZATION
    Li, Jueyou
    Li, Guoquan
    Wu, Zhiyou
    Wu, Changzhi
    Wang, Xiangyu
    Lee, Jae-Myung
    Jung, Kwang-Hyo
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (04) : 1841 - 1857