Stable boundary element domain decomposition methods for the Helmholtz equation

被引:21
|
作者
Steinbach, O. [1 ]
Windisch, M. [1 ]
机构
[1] Inst Numer Math, TU Graz, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
FETI;
D O I
10.1007/s00211-010-0315-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a stable boundary element domain decomposition method to solve boundary value problems of the Helmholtz equation via a tearing and interconnecting approach. A possible non-uniqueness of the solution of local boundary value problems due to the appearance of local eigensolutions is resolved by using modified interface conditions of Robin type, which results in a Galerkin boundary element discretization which is robust for all local wave numbers. Numerical examples confirm the stability of the proposed approach.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 50 条
  • [1] Stable boundary element domain decomposition methods for the Helmholtz equation
    O. Steinbach
    M. Windisch
    Numerische Mathematik, 2011, 118 : 171 - 195
  • [2] Deep Domain Decomposition Methods: Helmholtz Equation
    Li, Wuyang
    Wang, Ziming
    Cui, Tao
    Xu, Yingxiang
    Xiang, Xueshuang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (01) : 118 - 138
  • [3] Deep Domain Decomposition Methods: Helmholtz Equation
    Li, Wuyang
    Wang, Ziming
    Cui, Tao
    Xu, Yingxiang
    Xiang, Xueshuang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022,
  • [4] Domain Decomposition Methods for the Helmholtz Equation: A Numerical Investigation
    Gander, Martin J.
    Zhang, Hui
    Lecture Notes in Computational Science and Engineering, 2013, 91 : 215 - 222
  • [5] On the coupling of finite and boundary element methods for the Helmholtz equation
    Boutefnouchet, M.
    Djebabla, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A2): : 191 - 200
  • [6] Computing solutions for Helmholtz equation: Domain versus boundary decomposition
    Balabane, M
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 11 - 18
  • [7] A Kind of Boundary Element Methods for Boundary Value Problem of Helmholtz Equation
    张然
    姜正义
    马富明
    NortheasternMathematicalJournal, 2004, (03) : 253 - 256
  • [8] Meshfree Particle Methods in the Framework of Boundary Element Methods for the Helmholtz Equation
    Christopher Davis
    June G. Kim
    Hae-Soo Oh
    Min Hyung Cho
    Journal of Scientific Computing, 2013, 55 : 200 - 230
  • [9] Corners and stable optimized domain decomposition methods for the Helmholtz problem
    B. Després
    A. Nicolopoulos
    B. Thierry
    Numerische Mathematik, 2021, 149 : 779 - 818
  • [10] Corners and stable optimized domain decomposition methods for the Helmholtz problem
    Despres, B.
    Nicolopoulos, A.
    Thierry, B.
    NUMERISCHE MATHEMATIK, 2021, 149 (04) : 779 - 818