Existence of noncontractible periodic orbits of Hamiltonian systems separating two Lagrangian tori on T*Tn with application to nonconvex systems

被引:2
|
作者
Xue, Jinxin [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
INVARIANT-MEASURES; COTANGENT BUNDLES; HOMOLOGY; DYNAMICS;
D O I
10.4310/JSG.2017.v15.n3.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show the existence of non-contractible periodic orbits in Hamiltonian systems defined on T*T-n separating two Lagrangian tori under a certain cone assumption. Our result gives a positive answer to a question of Polterovich in [P]. As an application, we find periodic orbits in almost all the homotopy classes on a dense set of energy levels in Lorentzian type mechanical Hamiltonian systems defined on T*T-2. This solves a problem of Arnold in [A].
引用
收藏
页码:905 / 936
页数:32
相关论文
共 26 条