Live cell imaging of septin dynamics in Ustilago maydis

被引:9
|
作者
Baumann, S. [1 ,2 ]
Zander, S. [1 ]
Weidtkamp-Peters, S. [1 ]
Feldbruegge, M. [1 ]
机构
[1] Univ Dusseldorf, Dusseldorf, Germany
[2] CRG, Barcelona, Spain
来源
SEPTINS | 2016年 / 136卷
关键词
EARLY ENDOSOME MOTILITY; MESSENGER-RNA; TRANSPORT; TRANSLATION; MACHINERY; KINESIN-3; BIOLOGY;
D O I
10.1016/bs.mcb.2016.03.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Septins are highly conserved cytoskeletal proteins involved in a variety of biological processes such as cell polarization and cytokinesis. In humans, functional defects in these proteins have been linked to cancer and neuronal diseases. In recent years, substantial progress has been made in studying the structure of septin subunits and the formation of defined heteromeric building blocks. These are assembled into higher-order structures at distinct subcellular sites. An important microscopic approach in studying septin assembly and dynamics is the use of septins tagged with fluorescent proteins. This revealed, eg, that septins form rings during cytokinesis and that septins build extended filaments partially colocalizing with actin cables and rnicrotubules. Here, we describe extensive live cell imaging of septins in the model microorganism Ustilago maydis. We present techniques to study dynamic localization of protein and septin mRNA on shuttling endosomes as well as colocalization of proteins at these highly motile units. Moreover, FLIM-FRET experiments for analyzing local protein interactions are presented. Importantly, these imaging approaches transfer well to other fungal and animal model systems for in vivo analysis of septin dynamics.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 50 条
  • [1] An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize
    Boyce, KJ
    Chang, H
    D'Souza, CA
    Kronstad, JW
    EUKARYOTIC CELL, 2005, 4 (12) : 2044 - 2056
  • [2] Ustilago maydis
    Djamei, Armin
    CURRENT BIOLOGY, 2023, 33 (11) : R458 - R460
  • [3] Chitinases Are Essential for Cell Separation in Ustilago maydis
    Langner, Thorsten
    Oeztuerk, Merve
    Hartmann, Sarah
    Cord-Landwehr, Stefan
    Moerschbacher, Bruno
    Walton, Jonathan D.
    Goehre, Vera
    EUKARYOTIC CELL, 2015, 14 (09) : 846 - 857
  • [4] Ustilago maydis as a Pathogen
    Brefort, Thomas
    Doehlemann, Gunther
    Mendoza-Mendoza, Artemio
    Reissmann, Stefanie
    Djamei, Armin
    Kahmann, Regine
    ANNUAL REVIEW OF PHYTOPATHOLOGY, 2009, 47 : 423 - 445
  • [5] GENETICS OF USTILAGO MAYDIS
    HOLLIDAY, R
    GENETICS RESEARCH, 1961, 2 (02) : 204 - +
  • [6] Glycolysis in Ustilago maydis
    Saavedra, Emma
    Ramos-Casillas, Laura E.
    Marin-Hernandez, Alvaro
    Moreno-Sanchez, Rafael
    Guerra-Sanchez, Guadalupe
    FEMS YEAST RESEARCH, 2008, 8 (08) : 1313 - 1323
  • [7] Regulation of cell separation in the dimorphic fungus Ustilago maydis
    Weinzierl, G
    Leveleki, L
    Hassel, A
    Kost, G
    Wanner, G
    Bölker, M
    MOLECULAR MICROBIOLOGY, 2002, 45 (01) : 219 - 231
  • [8] Ustilago maydis reprograms cell proliferation in maize anthers
    Gao, Li
    Kelliher, Timothy
    Nguyen, Linda
    Walbot, Virginia
    PLANT JOURNAL, 2013, 75 (06): : 903 - 914
  • [9] Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis
    Hartmann, Sandra K.
    Stockdreher, Yvonne
    Wandrey, Georg
    Tehrani, Hamed Hosseinpour
    Zambanini, Thiemo
    Meyer, Andreas J.
    Buechs, Jochen
    Blank, Lars M.
    Schwarzlaender, Markus
    Wierckx, Nick
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2018, 1859 (10): : 1015 - 1024
  • [10] Acetate provokes mitochondrial stress and cell death in Ustilago maydis
    Kretschmer, Matthias
    Lambie, Scott
    Croll, Daniel
    Kronstad, James W.
    MOLECULAR MICROBIOLOGY, 2018, 107 (04) : 488 - 507