mTOR Overcomes Multiple Metabolic Restrictions to Enable HIV-1 Reverse Transcription and Intracellular Transport

被引:28
|
作者
Taylor, Harry E. [1 ]
Calantone, Nina [2 ]
Lichon, Drew [3 ]
Hudson, Hannah [2 ]
Clerc, Isabelle [2 ]
Campbell, Edward M. [3 ]
D'Aquila, Richard T. [2 ]
机构
[1] SUNY Upstate Med Univ, Dept Microbiol & Immunol, Syracuse, NY 13210 USA
[2] Northwestern Univ, Translat Res Ctr, Feinberg Sch Med, Dept Med,Div Infect Dis & HIV, Chicago, IL 60611 USA
[3] Loyola Univ Chicago, Stritch Sch Med, Dept Microbiol & Immunol, Maywood, IL 60153 USA
来源
CELL REPORTS | 2020年 / 31卷 / 12期
关键词
CD4(+) T-CELLS; MYCOPHENOLIC-ACID; NUCLEAR IMPORT; MAMMALIAN TARGET; PHOSPHOLIPASE-D; KINASE MTOR; ACTIVATION; INFECTION; INHIBITOR; RAPAMYCIN;
D O I
10.1016/j.celrep.2020.107810
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cellular metabolism governs the susceptibility of CD4 T cells to HIV-1 infection. Multiple early post-fusion steps of HIV-1 replication are restricted in resting peripheral blood CD4 T cells; however, molecular mechanisms that underlie metabolic control of these steps remain undefined. Here, we show that mTOR activity following T cell stimulatory signals overcomes metabolic restrictions in these cells by enabling the expansion of dNTPs to fuel HIV-1 reverse transcription (RT), as well as increasing acetyl-CoA to stabilize microtubules that transport RT products. We find that catalytic mTOR inhibition diminishes the expansion of pools of both of these metabolites by limiting glucose and glutamine utilization in several pathways, thereby suppressing HIV-1 infection. We demonstrate how mTOR-coordinated biosyntheses enable the early steps of HIV-1 replication, add metabolic mechanisms by which mTOR inhibitors block HIV-1, and identify some metabolic modules downstream of mTOR as druggable targets for HIV-1 inhibition.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] HIV-1 Reverse Transcription
    Hu, Wei-Shau
    Hughes, Stephen H.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (10):
  • [2] tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes
    Zaitseva, Lyubov
    Myers, Richard
    Fassati, Ariberto
    PLOS BIOLOGY, 2006, 4 (10) : 1689 - 1706
  • [3] The HIV-1 capsid and reverse transcription
    Aiken, Christopher
    Rousso, Itay
    RETROVIROLOGY, 2021, 18 (01)
  • [4] Reverse transcription of the HIV-1 pandemic
    Basavapathruni, Aravind
    Anderson, Karen S.
    FASEB JOURNAL, 2007, 21 (14): : 3795 - 3808
  • [5] ANALYSIS OF THE REVERSE TRANSCRIPTION OF HIV-1
    BARAT, C
    SCHATZ, O
    NAS, T
    LEGRICE, S
    DARLIX, JL
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 1992, 8 (05) : 869 - 869
  • [6] The HIV-1 capsid and reverse transcription
    Christopher Aiken
    Itay Rousso
    Retrovirology, 18
  • [7] Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription
    Levin, Judith G.
    Mitra, Mithun
    Mascarenhas, Anjali
    Musier-Forsyth, Karin
    RNA BIOLOGY, 2010, 7 (06) : 754 - 774
  • [8] Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7
    Fassati, A
    Görlich, D
    Harrison, I
    Zaytseva, L
    Mingot, JM
    EMBO JOURNAL, 2003, 22 (14): : 3675 - 3685
  • [9] Retinoic acid enhances HIV-1 reverse transcription and transcription in macrophages via mTOR-modulated mechanisms
    Dias, Jonathan
    Cattin, Amelie
    Bendoumou, Maryam
    Dutilleul, Antoine
    Lodge, Robert
    Goulet, Jean-Philippe
    Fert, Augustine
    Marchand, Laurence Raymond
    Salinas, Tomas Raul Wiche
    Yoka, Christ-Dominique Ngassaki
    Gabriel, Etiene Moreira
    Caballero, Ramon Edwin
    Routy, Jean-Pierre
    Cohen, Eric A.
    Van Lint, Carine
    Ancuta, Petronela
    CELL REPORTS, 2024, 43 (07):
  • [10] Natural endogenous reverse transcription of HIV-1
    Zhang, H
    Dornadula, G
    Pomerantz, RJ
    JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 1998, 41 (1-2) : 255 - 260