Preparation and biological properties of ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin biomimetic composite scaffolds for bone tissue engineering

被引:8
|
作者
Lu, Xingjian [1 ]
Liu, Leyun [1 ]
Feng, Shixuan [1 ]
Pan, Jiaqi [1 ]
Li, Chaorong [1 ]
Zheng, Yingying [1 ]
机构
[1] Zhejiang Sci Tech Univ, 928 2 St,Xiasha Higher Educ Pk, Hangzhou 310018, Peoples R China
关键词
nanoscale-ZnO; coaxial electrospun; chitosan; gelatin; bone tissue engineering; CHITOSAN; HYDROXYAPATITE; NANOFIBERS; HYDROGEL; HYBRID; DIFFERENTIATION; TITANIUM; GROWTH; ZNO;
D O I
10.1177/08853282221087110
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To imitate the composition of natural bone and further improve the biological property of the materials, ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin (ZnO/HAP/CS-PEO@GEL) composite scaffolds were developed. The core-shell structured chitosan-polyethylene oxide@gelatin (CS-PEO@GEL) nanofibers which could form the intramolecular hydrogen bond and achieve an Arg-Gly-Asp (RGD) polymer were first prepared by coaxial electrospinning to mimic the extracellular matrix. To further enhance biological activity, hydroxyapatite (HAP) was grown on the surface of the CS-PEO@GEL nanofibers using chemical deposition and ZnO particles were then evenly distributed on the surface of the above composite materials using RF magnetron sputtering. The SEM results showed that chemical deposition and magnetron sputtering did not destroy the three-dimensional architecture of materials, which was beneficial to cell growth. The cell compatibility and proliferation of MG-63 cells on ZnO/HAP/CS-PEO@GEL composite scaffolds were superior to those on CS-PEO@GEL and HAP/CS-PEO@GEL composite scaffolds. An appropriate amount of ZnO sputtering could promote the adhesion of cells on the composite nanofibers. The structure of bone tissue could be better simulated both in composition and in the microenvironment, which provided a suitable environment for cell growth and promoted the proliferation of MG-63 cells. The biomimetic ZnO/HAP/CS-PEO@GEL composite scaffolds were promising materials for bone tissue engineering.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 50 条
  • [1] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207
  • [2] Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization
    Hakimi, Fatemeh
    Jafari, Hamed
    Hashemikia, Samaneh
    Shabani, Siamak
    Ramazani, Ali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 233
  • [3] Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
    Liu, Xiaohua
    Smith, Laura A.
    Hu, Jiang
    Ma, Peter X.
    BIOMATERIALS, 2009, 30 (12) : 2252 - 2258
  • [4] Preparation and investigation of porous hydroxyapatite-gelatin composite scaffolds designed for bone tissue engineering
    Narbar, M. Kazemzadeh
    Ilashtjin, M. Solati
    Pazouki, M.
    CYTOTHERAPY, 2006, 8 : 63 - 63
  • [5] Biomimetic cryogels based on carboxymethyl chitosan/gelatin/hydroxyapatite for bone tissue engineering
    Asadi, Bahar
    Mirzadeh, Hamid
    Olov, Nafiseh
    Samadikuchaksaraei, Ali
    Kheirbakhsh, Raheleh
    Moradi, Roshanak
    Amanpour, Saeid
    Bagheri-Khoulenjani, Shadab
    BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS, 2023, 12 (01) : 1 - 11
  • [6] Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering
    Thein-Han, W. W.
    Misra, R. D. K.
    ACTA BIOMATERIALIA, 2009, 5 (04) : 1182 - 1197
  • [7] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [8] Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering
    Chen, Peng
    Liu, Leyun
    Pan, Jiaqi
    Mei, Jie
    Li, Chaorong
    Zheng, Yingying
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 97 : 325 - 335
  • [9] Preparation, structural and mechanical characterization of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering
    Narbat, Mehdi Kazemzadeh
    PROCEEDINGS OF THE FIFTH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2007, : 452 - 457
  • [10] Preparation and characterization of macroporous chitosan-gelatin β-tricalcium phosphate composite scaffolds for bone tissue engineering
    Yin, YJ
    Ye, F
    Cui, JF
    Zhang, FJ
    Li, XL
    Yao, KD
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (03): : 844 - 855