Privacy-Preserving Household Characteristic Identification With Federated Learning Method

被引:18
|
作者
Lin, Jun [1 ]
Ma, Jin [1 ]
Zhu, Jianguo [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Load modeling; Training; Servers; Data models; Computational modeling; Convolutional neural networks; Delays; Household characteristics; privacy preservation; federated learning; deep learning network;
D O I
10.1109/TSG.2021.3125677
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Understanding residential household characteristics is crucial for retailers to provide customers personalized services. Current methods infer household characteristics from smart meter data in a centralized manner that requires the data of all retailers to be gathered together for model training. This may raise privacy concerns since the privacy-sensitive data are owned by different retailers, and they may be unwilling to share the raw data. This paper proposes a federated learning (FL) based deep learning model to identify household characteristics. A hybrid model combining the convolutional neural network and long short-term neural network is designed to learn spatial-temporal features from load profiles. It is implemented in a decentralized manner based on the FL framework. To improve the training speed and accuracy, an asynchronous stochastic gradient descent with delay compensation method is proposed to update the global model parameters. Comprehensive experiments are conducted to verify the effectiveness of the proposed method.
引用
收藏
页码:1088 / 1099
页数:12
相关论文
共 50 条
  • [1] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [2] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [3] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [4] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [5] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [6] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [7] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [8] A Privacy-Preserving Method for Sequential Recommendation in Vertical Federated Learning
    Shi, Yutian
    Wang, Beilun
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2221 - 2226
  • [9] A privacy-preserving and verifiable federated learning method based on blockchain
    Fang, Chen
    Guo, Yuanbo
    Ma, Jiali
    Xie, Haodong
    Wang, Yifeng
    COMPUTER COMMUNICATIONS, 2022, 186 : 1 - 11
  • [10] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891