ON THE HIGHER-DIMENSIONAL MULTIFRACTAL ANALYSIS

被引:8
|
作者
Barral, Julien [1 ]
Qu, Yan-Hui [2 ]
机构
[1] Univ Paris 13, Inst Galilee, Dept Math, LAGA UMR 7539, F-93430 Villetaneuse, France
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
Almost additive potential; quotient; generalized multifractal formalism; NONADDITIVE THERMODYNAMIC FORMALISM; GIBBS MEASURES; VARIATIONAL PRINCIPLE; NONNEGATIVE MATRICES; EXPANDING MAPS; EQUILIBRIUM; REPELLERS; PRODUCTS; ENTROPY;
D O I
10.3934/dcds.2012.32.1977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We achieve the higher-dimensional multifractal analysis for quotients of almost additive potentials on topologically mixing subshifts of finite type without restriction on the regularity of the potentials,nor on the support of the Hausdorff spectrum, for which we do not need to assume that it has a non empty interior.
引用
收藏
页码:1977 / 1995
页数:19
相关论文
共 50 条
  • [1] Higher-dimensional multifractal analysis
    Barreira, L
    Saussol, B
    Schmeling, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (01): : 67 - 91
  • [2] Multifractal and higher-dimensional zeta functions
    Vehel, Jacques Levy
    Mendivil, Franklin
    NONLINEARITY, 2011, 24 (01) : 259 - 276
  • [3] HIGHER-DIMENSIONAL ANALYSIS OF APERIODIC STRUCTURES
    STEURER, W
    PHASE TRANSITIONS, 1989, 16 : 163 - 167
  • [4] Higher-dimensional multifractal value sets for conformal infinite graph directed Markov systems
    Kesseboehmer, Marc
    Urbanski, Mariusz
    NONLINEARITY, 2007, 20 (08) : 1969 - 1985
  • [5] On higher-dimensional dynamics
    Wesson, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [6] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [7] HIGHER-DIMENSIONAL COSMOLOGIES
    LORENZPETZOLD, D
    PHYSICS LETTERS B, 1984, 148 (1-3) : 43 - 47
  • [8] HIGHER-DIMENSIONAL UNIFICATION
    FREUND, PGO
    PHYSICA D, 1985, 15 (1-2): : 263 - 269
  • [9] Sharpening the shape analysis for higher-dimensional operator searches
    Fichet, Sylvain
    Tonero, Alberto
    Teles, Patricia Rebello
    PHYSICAL REVIEW D, 2017, 96 (03)
  • [10] Painleve analysis of new higher-dimensional soliton equation
    Porsezian, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (09) : 4675 - 4679