Non convex homogenization problems for singular structures

被引:4
|
作者
Braides, Andrea [1 ]
Piat, Valeria Chiado [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.3934/nhm.2008.3.489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a homogenization theorem for non-convex functionals depending on vector- valued functions, defined on Sobolev spaces with respect to oscillating measures. The proof combines the use of the localization methods of convergence with a ' discretization' argument, which allows to link the oscillating energies to functionals defined on a single Lebesgue space, and to state the hypothesis of p- connectedness of the underlying periodic measure in a handy way.
引用
收藏
页码:489 / 508
页数:20
相关论文
共 50 条