Influence of SCN- moiety on CH3NH3PbI3 perovskite film properties and the performance of carbon-based hole-transport-layer-free perovskite solar cells

被引:3
|
作者
Prasan, Primprapha [1 ]
Aunping, Namfon [2 ]
Chanlek, Narong [3 ]
Kumlangwan, Pantiwa [4 ]
Towannang, Madsakorn [4 ]
Klangtakai, Pawinee [4 ,5 ,6 ]
Srepusharawoot, Pornjuk [4 ,5 ,6 ]
Thongnum, Anusit [1 ]
Kumnorkaew, Pisist [7 ]
Jarernboon, Wirat [4 ,5 ,6 ]
Pimanpang, Samuk [1 ,5 ,6 ]
Amornkitbamrung, Vittaya [4 ,5 ,6 ]
机构
[1] Srinakharinwirot Univ, Fac Sci, Dept Phys, Bangkok 10110, Thailand
[2] King Mongkuts Inst Technol Ladkrabang, Fac Sci, Dept Phys, Bangkok 10520, Thailand
[3] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand
[4] Khon Kaen Univ, Fac Sci, Dept Phys, Khon Kaen 40002, Thailand
[5] Khon Kaen Univ, Inst Nanomat Res & Innovat Energy IN RIE, Res Network NANOTEC KKU RNN, Khon Kaen 40002, Thailand
[6] Chiang Mai Univ, Thailand Ctr Excellence Phys ThEP, POB 70, Chiang Mai 50202, Thailand
[7] Natl Nanotechnol Ctr NANOTEC, Natl Sci & Technol NSTDA, Khlong Luang 12120, Pathumthani, Thailand
关键词
CONDUCTOR-FREE; EFFICIENT; STABILITY;
D O I
10.1007/s10854-021-07687-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CH3NH3PbI3 perovskite films were prepared via a hot-casting method using six different CH3NH3I, PbI2 and Pb(SCN)(2) solutions. Surface morphology of perovskite films with low SCN- dopant levels (0.0625 M and 0.125 M Pb(SCN)(2)) showed smooth surfaces and large grain sizes. However, with the high SCN- dopant levels (0.1875 M and 0.25 M Pb(SCN)(2)), rough surfaces were produced with pinholes. The crystal of pure CH3NH3PbI3 (0 M Pb(SCN)(2)) film is a tetragonal perovskite structure. XRD spectra of all five Pb(SCN)(2) added films show the present of CH3NH3PbI3 films and the additional peak at 12.66 degrees. Rietveld refinement analysis reveals that the Pb(SCN)(2) addition causes the second phase PbI2 formation along with the tetragonal MAPbI(3) perovskite film rather than the CH3NH3Pb(SCN)(x)I3-x perovskite formation. The carbon-based hole-transport-layer (HTL)-free perovskite (from 0.0625 M Pb(SCN)(2) dopant) solar cell is the optimal ratio in generating a promising cell efficiency, 6.34%, with a good efficiency retention of 79.43% after 30 days of testing in comparison to a pure CH3NH3PbI3 (0 M Pb(SCN)(2) dopant) perovskite solar cell with an efficiency retention of only 26.92%. The great stability of the Pb(SCN)(2) added perovskite solar cells is attributed to the PbI2 layer covered MAPbI(3) grains blocking oxygen and/or water molecules from degrading MAPbI(3) perovskite.
引用
收藏
页码:1589 / 1603
页数:15
相关论文
共 50 条
  • [1] Influence of SCN− moiety on CH3NH3PbI3 perovskite film properties and the performance of carbon-based hole-transport-layer-free perovskite solar cells
    Primprapha Prasan
    Namfon Aunping
    Narong Chanlek
    Pantiwa Kumlangwan
    Madsakorn Towannang
    Pawinee Klangtakai
    Pornjuk Srepusharawoot
    Anusit Thongnum
    Pisist Kumnorkaew
    Wirat Jarernboon
    Samuk Pimanpang
    Vittaya Amornkitbamrung
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 1589 - 1603
  • [2] Calculation and Fabrication of a CH3NH3Pb(SCN)xI3-x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells
    Kumlangwan, Pantiwa
    Suksangrat, Pitphichaya
    Towannang, Madsakorn
    Faibut, Narit
    Harnchana, Viyada
    Srepusharawoot, Pornjuk
    Chompoosor, Apiwat
    Kumnorkaew, Pisist
    Jarernboon, Wirat
    Pimanpang, Samuk
    Amornkitbamrung, Vittaya
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (12) : 1210 - 1217
  • [3] Calculation and Fabrication of a CH3NH3Pb(SCN)xI3−x Perovskite Film as a Light Absorber in Carbon-based Hole-transport-layer-free Perovskite Solar Cells
    Pantiwa Kumlangwan
    Pitphichaya Suksangrat
    Madsakorn Towannang
    Narit Faibut
    Viyada Harnchana
    Pornjuk Srepusharawoot
    Apiwat Chompoosor
    Pisist Kumnorkaew
    Wirat Jarernboon
    Samuk Pimanpang
    Vittaya Amornkitbamrung
    Journal of the Korean Physical Society, 2020, 77 : 1210 - 1217
  • [4] Eflcient Solution Processed CH3NH3PbI3 Perovskite Solar Cells with PolyTPD Hole Transport Layer
    Hoecker, Julian
    Kiermasch, David
    Rieder, Philipp
    Tvingstedt, Kristofer
    Baumann, Andreas
    Dyakonov, Vladimir
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (08): : 665 - 672
  • [5] Surface modification of sputtered NiOx hole transport layer for CH3NH3PbI3 perovskite solar cells
    Yanagida, Masatoshi
    Nakamura, Tensho
    Yoshida, Tsukasa
    Khadka, Dhruba B.
    Shirai, Yasuhiro
    Miyano, Kenjiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SK)
  • [6] Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells
    Haruyama, Jun
    Sodeyama, Keitaro
    Han, Liyuan
    Tateyama, Yoshitaka
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) : 554 - 561
  • [7] An Analytical Approach to CH3NH3PbI3 Perovskite Solar Cells Based on Different Hole Transport Materials
    Ntia, Teneng S.
    Supasai, Thidarat
    Tang, I-Ming
    Amornkitbumrung, Vittaya
    Yuan, Jianyu
    Li, Youyong
    Dittrich, Thomas
    Rujisamphan, Nopporn
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (14):
  • [8] Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer
    Alidaei, Maryam
    Izadifard, Morteza
    Ghazi, Mohammad Ebrahim
    Roghabadi, Farzaneh Arabpour
    Ahmadi, Vahid
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (07) : 6936 - 6946
  • [9] Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer
    Maryam Alidaei
    Morteza Izadifard
    Mohammad Ebrahim Ghazi
    Farzaneh Arabpour Roghabadi
    Vahid Ahmadi
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 6936 - 6946
  • [10] The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells
    Huang, Pao-Hsun
    Wang, Yeong-Her
    Ke, Jhong-Ciao
    Huang, Chien-Jung
    ENERGIES, 2017, 10 (05):