Limit cycles in a general Kolmogorov model

被引:35
|
作者
Huang, XC [1 ]
Zhu, LM [1 ]
机构
[1] Yangzhou Polytech Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
关键词
limit cycle; predator-prey system; Kolmogorov model;
D O I
10.1016/j.na.2004.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of limit cycles is interesting and significant both in theory and applications. In mathematical ecology, finding models that display a stable limit cycle-an attracting stable self-sustained oscillation, is a primary work. In this paper, a general Kolmogorov system, which includes the Gause-type model (Math. Biosci. 88 (1988) 67) the general predator-prey model (J. Phys. A: Math. Gen. 21 (1988) L685; Math. Biosci. 96 (1989) 47), and many other models (J. Biomath. 15(3) (2001) 266; J. Biomath. 16(2) (2001) 156; J. Math. 21(22) (2001) 145), is studied. The conditions for the existence and uniqueness of limit cycles in this model are proved. Some known results are easily derived as an illustration of our work. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1393 / 1414
页数:22
相关论文
共 50 条
  • [1] The limit cycles of a general Kolmogorov system
    Yuan, Yueding
    Chen, Haibo
    Du, Chaoxiong
    Yuan, Yuejin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 225 - 237
  • [2] Limit cycles of a cubic Kolmogorov system
    Lloyd, NG
    Pearson, JM
    Saez, E
    Szanto, I
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 15 - 18
  • [3] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [4] Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field
    Du Chaoxiong
    Liu Yirong
    Huang Wentao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [5] HETEROCLINIC LIMIT CYCLES IN COMPETITIVE KOLMOGOROV SYSTEMS
    Hou, Zhanyuan
    Baigent, Stephen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 4071 - 4093
  • [6] A cubic Kolmogorov system with six limit cycles
    Lloyd, NG
    Pearson, JM
    Saéz, E
    Szántó, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 445 - 455
  • [7] Limit Cycles in a Class of Quartic Kolmogorov Model with Three Positive Equilibrium Points
    Du, Chaoxiong
    Liu, Yirong
    Zhang, Qi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [8] LIMIT-CYCLES IN A KOLMOGOROV-TYPE MODEL AND ITS APPLICATION IN IMMUNOLOGY
    HUANG, XC
    MATHEMATICAL AND COMPUTER MODELLING, 1990, 14 : 614 - 617
  • [9] KOLMOGOROV DIFFERENTIAL SYSTEMS WITH PRESCRIBED ALGEBRAIC LIMIT CYCLES
    Chouader, R.
    Benyoucef, S.
    Bendjeddou, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 1 - 8
  • [10] Nondegenerate centers and limit cycles of cubic Kolmogorov systems
    Antonio Algaba
    Cristóbal García
    Jaume Giné
    Nonlinear Dynamics, 2018, 91 : 487 - 496