Projections onto the Set of Feasible Inputs and the Set of Feasible Solutions

被引:0
|
作者
Gambella, Claudio [1 ]
Marecek, Jakub [1 ]
Mevissen, Martin [1 ]
机构
[1] IBM Res Ireland, Dublin D15, Ireland
关键词
Optimization; Optimization methods; Mathematical programming; Polynomials; Multivariable polynomials; OPTIMAL POWER-FLOW; OPTIMIZATION; RELAXATIONS;
D O I
10.1109/allerton.2019.8919776
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the projection onto the set of feasible inputs and the set of feasible solutions of a polynomial optimisation problem (POP). Our motivation is increasing the robustness of solvers for POP: Without a priori guarantees of feasibility of a particular instance, one should like to perform the projection onto the set of feasible inputs prior to running a solver. Without a certificate of optimality, one should like to project the output of the solver onto the set of feasible solutions subsequently. We study the computational complexity, formulations, and convexifications of the projections. Our results are illustrated on IEEE test cases of Alternating Current Optimal Power Flow (ACOPF) problem.
引用
收藏
页码:937 / 943
页数:7
相关论文
共 50 条
  • [1] EULER APPROXIMATION OF THE FEASIBLE SET
    DONTCHEV, AL
    HAGER, WW
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (3-4) : 245 - 261
  • [2] The importance of defining the feasible set
    Cowen, Tyler
    ECONOMICS AND PHILOSOPHY, 2007, 23 (01) : 1 - 14
  • [3] Bilevel optimization: on the structure of the feasible set
    Jongen, H. Th.
    Shikhman, V.
    MATHEMATICAL PROGRAMMING, 2012, 136 (01) : 65 - 89
  • [4] ON THE STABILITY OF THE FEASIBLE SET IN OPTIMIZATION PROBLEMS
    Dinh, N.
    Goberna, M. A.
    Lopez, M. A.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2254 - 2280
  • [5] On representations of the feasible set in convex optimization
    Jean Bernard Lasserre
    Optimization Letters, 2010, 4 : 1 - 5
  • [6] A feasible set for chemical speciation problems
    Brassard, P
    Bodurtha, P
    COMPUTERS & GEOSCIENCES, 2000, 26 (03) : 277 - 291
  • [7] On representations of the feasible set in convex optimization
    Lasserre, Jean Bernard
    OPTIMIZATION LETTERS, 2010, 4 (01) : 1 - 5
  • [8] On the stability of the feasible set in linear optimization
    Goberna, MA
    López, MA
    Todorov, MI
    SET-VALUED ANALYSIS, 2001, 9 (1-2): : 75 - 99
  • [9] On the Stability of the Feasible Set in Linear Optimization
    M. A. Goberna
    M. A. López
    M. I. Todorov
    Set-Valued Analysis, 2001, 9 : 75 - 99
  • [10] Bilevel optimization: on the structure of the feasible set
    H. Th. Jongen
    V. Shikhman
    Mathematical Programming, 2012, 136 : 65 - 89