Latent Dynamics for Artefact-Free Character Animation via Data-Driven Reinforcement Learning

被引:0
|
作者
Gamage, Vihanga [1 ]
Ennis, Cathy [1 ]
Ross, Robert [1 ]
机构
[1] Technol Univ Dublin, Sch Comp Sci, Dublin, Ireland
关键词
Reinforcement learning; Latent dynamics; Animation;
D O I
10.1007/978-3-030-86380-7_55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of character animation, recent work has shown that data-driven reinforcement learning (RL) methods can address issues such as the difficulty of crafting reward functions, and train agents that can portray generalisable social behaviours. However, particularly when portraying subtle movements, these agents have shown a propensity for noticeable artefacts, that may have an adverse perceptual effect. Thus, for these agents to be effectively used in applications where they would interact with humans, the likelihood of these artefacts need to be minimised. In this paper, we present a novel architecture for agents to learn latent dynamics in a more efficient manner, while maintaining modelling flexibility and performance, and reduce the occurrence of noticeable artefacts when generating animation. Furthermore, we introduce a mean-sampling technique when applying learned latent stochastic dynamics to improve the stability of trained model-based RL agents.
引用
收藏
页码:675 / 687
页数:13
相关论文
共 50 条
  • [1] Data-driven Facial Animation via Hypergraph Learning
    Li, Xi
    Yu, Jun
    Gao, Fei
    Zhang, Jian
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 442 - 445
  • [2] DATA-DRIVEN MODEL-FREE ITERATIVE LEARNING CONTROL USING REINFORCEMENT LEARNING
    Song, Bing
    Phan, Minh Q.
    Longman, Richard W.
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2579 - 2597
  • [3] A Data-Driven Pandemic Simulator with Reinforcement Learning
    Zhang, Yuting
    Ma, Biyang
    Cao, Langcai
    Liu, Yanyu
    ELECTRONICS, 2024, 13 (13)
  • [4] Model-free Data-driven Predictive Control Using Reinforcement Learning
    Sawant, Shambhuraj
    Reinhardt, Dirk
    Kordabad, Arash Bahari
    Gros, Sebastien
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4046 - 4052
  • [5] Data-driven torque and pitch control of wind turbines via reinforcement learning
    Xie, Jingjie
    Dong, Hongyang
    Zhao, Xiaowei
    RENEWABLE ENERGY, 2023, 215
  • [6] Data-driven Haptic Modeling of Plastic Flow via Inverse Reinforcement Learning
    Abdulali, Arsen
    Jeon, Seokhee
    2021 IEEE WORLD HAPTICS CONFERENCE (WHC), 2021, : 115 - 120
  • [7] Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning
    Dong, Hongyang
    Zhao, Xiaowei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) : 1468 - 1475
  • [8] Data-driven characterization of latent dynamics on quantum testbeds
    Reddy, Sohail
    Gunther, Stefanie
    Cho, Yujin
    AVS QUANTUM SCIENCE, 2024, 6 (03):
  • [9] Stability preserving data-driven models with latent dynamics
    Luo, Yushuang
    Li, Xiantao
    Hao, Wenrui
    CHAOS, 2022, 32 (08)
  • [10] Data-Driven Economic NMPC Using Reinforcement Learning
    Gros, Sebastien
    Zanon, Mario
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (02) : 636 - 648