Morphological consequences of ligand exchange in quantum dot - Polymer solar cells

被引:8
|
作者
Hickey, Raymond T. [1 ]
Jedlicka, Erin [2 ]
Pokuri, Balaji Sesha Sarath [3 ]
Colbert, Adam E. [2 ]
Bedolla-Valdez, Zaira I. [4 ]
Ganapathysubramanian, Baskar [3 ]
Ginger, David S. [2 ]
Moule, Adam J. [4 ]
机构
[1] Univ Calif Davis, Dept Mat Sci, Davis, CA 95616 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA USA
[4] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Organic photovoltaics; Electron tomography; Quantum dot solar cells; Ligand exchange; COLLOIDAL PBS NANOCRYSTALS; ELECTRON TOMOGRAPHY; THIN-FILMS; EFFICIENCY; PASSIVATION; PHOTOLUMINESCENCE; PHOTOVOLTAICS; PERFORMANCE;
D O I
10.1016/j.orgel.2017.12.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mixtures of conjugated polymers and quantum dot nanocrystals present an interesting solution-processable materials system for active layers in optoelectronic devices, including solar cells. We use scanning transmission electron microscopy to investigate the effects of exchanging the capping ligand of quantum dots on the three-dimensional morphology of the film. We created 3D reconstructions for blends of poly((4,8-bis(octyloxy) benzo (1,2-b: 4,5-b')-dithiophene-2,6-diyl)(2-((dodecyloxy) carbonyl) thieno (3,4-b)-thiophenediyl)) (PTB1) and PbS quantum dots capped with oleic acid (OA), butylamine (BA), OA to 3-mercaptopropionic acid (MPA), and BA to MPA. We use these reconstructed volumes to evaluate differences in exciton dissociation and charge transport as a function of ligand processing. We show that the MPA exchange without an intermediate BA treatment results in severe changes to the film structure and a non-ideal morphology for an effective device. We also show that with a BA exchange, the morphology remains largely unchanged with the additional MPA treatment. This quantitative characterization elucidates previously reported device performance changes caused by ligand exchange and should inform future device fabrication protocols.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 50 条
  • [1] Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials
    Nadarajah, A.
    Smith, T.
    Koenenkamp, R.
    NANOTECHNOLOGY, 2012, 23 (48)
  • [2] Morphological control of hybrid polymer-quantum dot solar cells with electron acceptor ligands
    Boivin, Mathieu
    Lamarre, Sebastien
    Tessier, Jonathan
    Lecavalier, Marie-Eve
    Najari, Ahmed
    Dufour-Beausejour, Sophie
    Dussault, Evelyne Brown
    Collin, Pierre
    Allen, Claudine Ni
    APPLIED PHYSICS LETTERS, 2012, 100 (03)
  • [3] Hybrid quantum dot/polymer solar cells: Bulk heterojunctions, Schottky diodes, and ligand treatments
    Ginger, David S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [4] Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells
    Mastria, Rosanna
    Rizzo, Aurora
    Giansante, Carlo
    Ballarini, Dario
    Dominici, Lorenzo
    Inganaes, Olle
    Gigli, Giuseppe
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27): : 14972 - 14979
  • [5] Quantifying quantum dot ligand exchange
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2018, 96 (32) : 11 - 11
  • [6] Measuring Efficiency Losses in Quantum Dot Polymer Solar Cells
    Palomares, Emilio
    Albero, Josep
    ORGANIC PHOTONICS V, 2012, 8435
  • [7] Parameters in planar quantum dot-polymer solar cell: Tuned by QD Eg, ligand exchange and fabrication process
    Xie, Qiaomu
    Ming, Shuaiqiang
    Chen, Lijun
    Wu, Yulei
    Zhang, Wenxiao
    Liu, Xiaohui
    Cao, Meng
    Wang, Hai-Qiao
    Fang, Junfeng
    ORGANIC ELECTRONICS, 2019, 69 : 1 - 6
  • [8] Surface Decomposition and Healing in Solution-Phase Ligand Exchange for Efficient Colloidal Quantum Dot Solar Cells
    Lee, Byungwoo
    Song, Jung Hoon
    SCIENCE OF ADVANCED MATERIALS, 2022, 14 (01) : 141 - 146
  • [9] Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange
    Zhang, Xiaoliang
    Jia, Donglin
    Hagglund, Carl
    Oberg, Viktor A.
    Du, Juan
    Liu, Jianhua
    Johansson, Erik M. J.
    NANO ENERGY, 2018, 53 : 373 - 382
  • [10] Colloidal quantum dot ligand engineering for high performance solar cells
    Wang, Ruili
    Shang, Yuequn
    Kanjanaboos, Pongsakorn
    Zhou, Wenjia
    Ning, Zhijun
    Sargent, Edward H.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) : 1130 - 1143