Learning long-range terrain classification for autonomous navigation

被引:18
作者
Bajracharya, Max [1 ]
Tang, Benyang [1 ]
Howard, Andrew [1 ]
Turmon, Michael [1 ]
Matthies, Larry [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9 | 2008年
关键词
D O I
10.1109/ROBOT.2008.4543828
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a method for learning the terrain classification of long-range appearance data from short-range, stereo-based geometry, along with a map representation for utilizing this data to improve autonomous off-road navigation. The continuous, online learning method allows the system to constantly adapt to changing terrain and environmental conditions, while the polar-perspective map representation allows the system to effectively plan with stereo data at long ranges. Various evaluations of the long-range classification and improvements in system performance are described, including results from an independent third-party testing team.
引用
收藏
页码:4018 / 4024
页数:7
相关论文
共 16 条
[1]  
[Anonymous], ROB SCI SYST C
[2]   Support vector machines for histogram-based image classification [J].
Chapelle, O ;
Haffner, P ;
Vapnik, VN .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1055-1064
[3]  
HADSELL R, 2007, ROB SCI SYST C
[4]  
HAPPOLD M, 2006, ROB SCI SYST C
[5]   Towards learned traversability for robot navigation: From underfoot to the far field [J].
Howard, Andrew ;
Turmon, Michael ;
Matthies, Larry ;
Tang, Benyang ;
Angelova, Anelia ;
Mjolsness, Eric .
JOURNAL OF FIELD ROBOTICS, 2006, 23 (11-12) :1005-1017
[6]   The DARPA LAGR Program: Goals, challenges, methodology, and phase I results [J].
Jackel, L. D. ;
Krotkov, Eric ;
Perschbacher, Michael ;
Pippine, Jim ;
Sullivan, Chad .
JOURNAL OF FIELD ROBOTICS, 2006, 23 (11-12) :945-973
[7]  
KIM D, 2006, INT C ROB AUT
[8]  
LIEB D, 2005, ROB SCI SYST C
[9]  
MANDUCHI R, 2003, AUTON ROBOT, V18, P81102
[10]  
MATTHIES L, 2005, NIPS WORKSHH MACH LE