Trimming Approach of Robust Clustering for Smartphone Behavioral Analysis

被引:1
|
作者
El Attar, Ali [1 ]
Khatoun, Rida [2 ]
Lemercier, Marc [1 ]
机构
[1] Univ Technol Troyes, ICD, HETIC, ERA,CNRS,UMR 6281, Troyes, France
[2] Telecom ParisTech, F-75013 Paris, France
来源
2014 12TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2014) | 2014年
关键词
D O I
10.1109/EUC.2014.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, smartphones get increasingly popular which also attracted hackers. With the increasing capabilities of such phones, more and more malicious softwares targeting these devices have been developed. Malwares can seriously damage an infected device within seconds. In this paper, we propose to use the trimming approaches for automatic clustering (trimmed k-means, Tclust) of smartphone's applications. They aim to identify homogenous groups of applications exhibiting similar behavior and allow to handle a proportion of contaminating data to guarantee the robustness of clustering. Then, a clustering-based detection technique is applied to compute an anomaly score for each application, leading to discover the most dangerous among them. Initial experiments results prove the efficiency and the accuracy of the used clustering methods in detecting abnormal smartphones applications and that with a low false alerts rate.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 50 条
  • [1] TCLUST: Trimming Approach of Robust Clustering Method
    Jedi, Muhamad Alias Md.
    Adnan, Robiah
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (04): : 232 - 237
  • [2] Robust clustering algorithm: The use of soft trimming approach
    Taheri, Sona
    Bagirov, Adil M.
    Sultanova, Nargiz
    Ordin, Burak
    PATTERN RECOGNITION LETTERS, 2024, 185 : 15 - 22
  • [3] Robust clustering based on trimming
    Garcia-Escudero, Luis A.
    Mayo-Iscar, Agustin
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (04):
  • [4] Cluster analysis with cellwise trimming and applications for the robust clustering of curves
    Garcia-Escudero, L. A.
    Rivera-Garcia, D.
    Mayo-Iscar, A.
    Ortega, J.
    INFORMATION SCIENCES, 2021, 573 : 100 - 124
  • [5] A general trimming approach to robust cluster analysis
    Garcia-Escudero, Luis A.
    Gordaliza, Alfonso
    Matran, Carlos
    Mayo-Iscar, Agustin
    ANNALS OF STATISTICS, 2008, 36 (03): : 1324 - 1345
  • [6] Robust Fuzzy Clustering via Trimming and Constraints
    Dotto, Francesco
    Farcomeni, Alessio
    Angel Garcia-Escudero, Luis
    Mayo-Iscar, Agustin
    SOFT METHODS FOR DATA SCIENCE, 2017, 456 : 197 - 204
  • [7] Robust clustering for functional data based on trimming and constraints
    Diego Rivera-García
    Luis A. García-Escudero
    Agustín Mayo-Iscar
    Joaquín Ortega
    Advances in Data Analysis and Classification, 2019, 13 : 201 - 225
  • [8] Robust clustering for functional data based on trimming and constraints
    Rivera-Garcia, Diego
    Garcia-Escudero, Luis A.
    Mayo-Iscar, Agustin
    Ortega, Joaquin
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (01) : 201 - 225
  • [9] Trimming the Smartphone Network Stack
    Zhu, Yanzi
    Zhu, Yibo
    Nika, Ana
    Zhao, Ben Y.
    Zheng, Haitao
    PROCEEDINGS OF THE 15TH ACM WORKSHOP ON HOT TOPICS IN NETWORKS (HOTNETS '16), 2016, : 176 - 182
  • [10] An Unsupervised Ensemble Clustering Approach for the Analysis of Student Behavioral Patterns
    Li, Xiaoyong
    Zhang, Yong
    Cheng, Huimin
    Zhou, Feifei
    Yin, Baocai
    IEEE ACCESS, 2021, 9 : 7076 - 7091