3D Diamond Tracking Detectors: numerical analysis for Timing applications with TCAD tools

被引:3
|
作者
Morozzi, A. [1 ]
Sciortino, S. [3 ,4 ]
Anderlini, L. [4 ]
Servoli, L. [1 ]
Kanxheri, K. [1 ]
Lagomarsino, S. [4 ]
Passeri, D. [1 ,2 ]
机构
[1] INFN Perugia, Via Pascoli, I-06125 Perugia, Italy
[2] Univ Perugia, Engn Dept, Via G Duranti 93, I-06125 Perugia, Italy
[3] Univ Florence, Dept Phys, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[4] INFN Florence, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
JOURNAL OF INSTRUMENTATION | 2020年 / 15卷 / 01期
关键词
Detector modelling and simulations II (electric fields; charge transport; multiplication; and induction; pulse formation; electron emission; etc); Diamond Detectors; Radiation-hard detectors;
D O I
10.1088/1748-0221/15/01/C01048
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In view of the HL-LHC upgrade the use of Chemical Vapor Deposited (CVD) diamond has been proposed as an efficient alternative to conventional silicon-based devices. Diamond detectors are more robust to radiation damage, since the high carriers' mobility allows faster signal collection when compared to silicon, while retaining extremely low leakage currents. These properties could be of particular interest in particle detection applications where stringent timing and radiation tolerance requirements need to be fulfilled. A suitable implementation of such a class of detector is that of 3D pixelated CVD diamond with graphitic parallel columns/trenches contact scheme, fabricated through a focused laser beam technology. TCAD simulations can be exploited to assess the effect of different electrode configurations and/or biasing scheme on the electric field profiles, aiming at minimizing the effects of inefficient field regions in terms of charge collection. For timing application purposes, the transport effects along the graphitic columns can be accounted for, aiming at evaluating the performance and limitations of such a class of detectors. The equivalent "load" effect of graphitic columns of different size/resistivity can be taken into account by means of device/circuit-level simulations including measured resistances and capacitances.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Combined TCAD and Geant4 simulations of diamond detectors for timing applications
    Morozzi, A.
    Passeri, D.
    Vecchi, S.
    Servoli, L.
    Sciortino, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 936 : 436 - 438
  • [2] Fabrication and Characterisation of 3D Diamond Pixel Detectors With Timing Capabilities
    Anderlini, Lucio
    Bellini, Marco
    Bizzeti, Andrea
    Cardini, Alessandro
    Ciaranfi, Roberto
    Corsi, Chiara
    Garau, Michela
    Lai, Adriano
    Lagomarsino, Stefano
    Lampis, Andrea
    Loi, Angelo
    Lucarelli, Chiara
    Mariani, Saverio
    Minafra, Nicola
    Morozzi, Arianna
    Mulargia, Roberto
    Passaleva, Giovanni
    Passeri, Daniele
    Sciortino, Silvio
    Vecchi, Stefania
    Veltri, Michele
    FRONTIERS IN PHYSICS, 2020, 8
  • [3] A Study of the Radiation Tolerance and Timing Properties of 3D Diamond Detectors
    Anderlini, Lucio
    Bellini, Marco
    Cindro, Vladimir
    Corsi, Chiara
    Kanxheri, Keida
    Lagomarsino, Stefano
    Lucarelli, Chiara
    Morozzi, Arianna
    Passaleva, Giovanni
    Passeri, Daniele
    Sciortino, Silvio
    Servoli, Leonello
    Veltri, Michele
    SENSORS, 2022, 22 (22)
  • [4] Simulation of 3D diamond detectors
    Forcolin, G. T.
    Oh, A.
    Murphy, S. A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 845 : 72 - 75
  • [5] Diamond Pixel Detectors and 3D Diamond Devices
    Venturi, N.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [6] Laser processing in 3D diamond detectors
    Murphy, S. A.
    Booth, M.
    Li, L.
    Oh, A.
    Salter, P.
    Sun, B.
    Whitehead, D.
    Zadoroshnyj, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 845 : 136 - 138
  • [7] Homogeneity of CVD diamond detectors in tracking applications
    Manfredotti, C
    Fizzotti, F
    Giudice, L
    Paolini, C
    Vittone, E
    Lu, R
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 187 (04): : 566 - 578
  • [8] A 3D diamond detector for particle tracking
    Artuso, M.
    Bachmair, F.
    Bani, L.
    Bartosik, M.
    Beacham, J.
    Bellini, V.
    Belyaev, V.
    Bentele, B.
    Berdermann, E.
    Bergonzo, P.
    Bes, A.
    Brom, J-M.
    Bruzzi, M.
    Cerv, M.
    Chau, C.
    Chiodini, G.
    Chren, D.
    Cindro, V.
    Claus, G.
    Collot, J.
    Costa, S.
    Cumalat, J.
    Dabrowski, A.
    D'Alessandro, R.
    de Boer, W.
    Dehning, B.
    Dobos, D.
    Dunser, M.
    Eremin, V.
    Eusebi, R.
    Forcolin, G.
    Forneris, J.
    Frais-Koelbl, H.
    Gan, K. K.
    Gastal, M.
    Goffe, M.
    Goldstein, J.
    Golubev, A.
    Gonella, L.
    Gorisek, A.
    Graber, L.
    Grigoriev, E.
    Grosse-Knetter, J.
    Gui, B.
    Guthoff, M.
    Haughton, I.
    Hidas, D.
    Hits, D.
    Hoeferkamp, M.
    Hofmann, T.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 : 402 - 405
  • [9] A 3D diamond detector for particle tracking
    Bachmair, F.
    Baeni, L.
    Bergonzo, P.
    Caylar, B.
    Forcolin, G.
    Haughton, I.
    Hits, D.
    Kagan, H.
    Kass, R.
    Li, L.
    Oh, A.
    Phan, S.
    Pomorski, M.
    Smith, D. S.
    Tyzhneyyi, V.
    Wallny, R.
    Whitehead, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 786 : 97 - 104
  • [10] Holographic 3D tracking of microscopic tools
    Gluckstad, Jesper
    Villangca, Mark
    Banas, Andrew
    Palima, Darwin
    OPTICAL PATTERN RECOGNITION XXVI, 2015, 9477