A HARDY-LITTLEWOOD MAXIMAL OPERATOR ADAPTED TO THE HARMONIC OSCILLATOR

被引:2
|
作者
Bailey, Julian [1 ]
机构
[1] Australian Natl Univ, ANU Coll Sci, Math Sci Inst, Canberra, ACT, Australia
来源
基金
澳大利亚研究理事会;
关键词
Hardy-Littlewood; weights; harmonic oscillator; heat maximal operator; SCHRODINGER-OPERATORS; BMO;
D O I
10.33044/revuma.v59n2a07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper constructs a Hardy-Littlewood type maximal operator adapted to the Schrodinger operator L := -Delta + |x|(2) acting on L-2(R-d). It achieves this through the use of the Gaussian grid Delta(gamma)(0), constructed by Maas, van Neerven, and Portal [Ark. Mat. 50 (2012), no. 2, 379-395] with the Ornstein-Uhlenbeck operator in mind. At the scale of this grid, this maximal operator will resemble the classical Hardy-Littlewood operator. At a larger scale, the cubes of the maximal function are decomposed into cubes from Delta(gamma)(0) and weighted appropriately. Through this maximal function, a new class of weights is defined, A(p)(+), with the property that for any w is an element of A(p)(+) the heat maximal operator associated with L is bounded from L-p(w) to itself. This class contains any other known class that possesses this property. In particular, it is strictly larger than A(p).
引用
收藏
页码:339 / 373
页数:35
相关论文
共 50 条
  • [1] Local Hardy-Littlewood maximal operator
    Lin, Chin-Cheng
    Stempak, Krzysztof
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 797 - 813
  • [2] EIGENFUNCTIONS OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR
    Colzani, Leonardo
    Perez Lazaro, Javier
    COLLOQUIUM MATHEMATICUM, 2010, 118 (02) : 379 - 389
  • [3] On the centered Hardy-Littlewood maximal operator
    Melas, AD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (08) : 3263 - 3273
  • [4] Behavior of the Hardy-Littlewood maximal operator
    Boche, H
    ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) : 221 - 229
  • [5] TWO GENERALIZATIONS OF HARDY-LITTLEWOOD MAXIMAL OPERATOR
    Gao Hongya Zhao HongliangCollege of Mathematics and Computer Science
    Applied Mathematics A Journal of Chinese Universities(Series B), 2006, (01) : 59 - 63
  • [6] Two generalizations of Hardy-Littlewood maximal operator
    Gao H.
    Zhao H.
    Applied Mathematics-A Journal of Chinese Universities, 2006, 21 (1) : 59 - 63
  • [7] ON THE COMPACTNESS OF COMMUTATORS OF HARDY-LITTLEWOOD MAXIMAL OPERATOR
    Wang, D. -H.
    Zhou, J.
    Teng, Z. -D.
    ANALYSIS MATHEMATICA, 2019, 45 (03) : 599 - 619
  • [8] Rearrangement inequality for the Hardy-Littlewood maximal operator
    Nie, Xudong
    Yan, Dunyan
    Liu, Shao
    Deng, Yangkendi
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (03)
  • [9] Double Points Local Hardy-Littlewood Maximal Operator
    Song, Futao
    Ju, Na
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] Hardy-Littlewood maximal operator on Lp(x)(R)
    Nekvinda, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 255 - 265