Information Geometry on Complexity and Stochastic Interaction

被引:44
|
作者
Ay, Nihat [1 ,2 ,3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, Fac Math & Comp Sci, D-04009 Leipzig, Germany
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
MAXIMIZATION;
D O I
10.3390/e17042432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interdependencies of stochastically interacting units are usually quantified by the Kullback-Leibler divergence of a stationary joint probability distribution on the set of all configurations from the corresponding factorized distribution. This is a spatial approach which does not describe the intrinsically temporal aspects of interaction. In the present paper, the setting is extended to a dynamical version where temporal interdependencies are also captured by using information geometry of Markov chain manifolds.
引用
收藏
页码:2432 / 2458
页数:27
相关论文
共 50 条
  • [1] Unified framework for the entropy production and the stochastic interaction based on information geometry
    Ito, Sosuke
    Oizumi, Masafumi
    Amari, Shun-ichi
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [2] Elementary complexity and geometry of interaction
    Baillot, P
    Pedicini, M
    FUNDAMENTA INFORMATICAE, 2001, 45 (1-2) : 1 - 31
  • [3] Fisher information and stochastic complexity
    Rissanen, JJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 40 - 47
  • [4] From Complexity to Information Geometry and Beyond
    Ghikas, Demetris P. K.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (02): : 212 - 220
  • [5] Stochastic Thermodynamic Interpretation of Information Geometry
    Ito, Sosuke
    PHYSICAL REVIEW LETTERS, 2018, 121 (03)
  • [6] Information Geometry of Nonlinear Stochastic Systems
    Hollerbach, Rainer
    Dimanche, Donovan
    Kim, Eun-jin
    ENTROPY, 2018, 20 (08):
  • [7] Algebraic geometry and stochastic complexity of hidden Markov models
    Yamazaki, K
    Watanabe, S
    NEUROCOMPUTING, 2005, 69 (1-3) : 62 - 84
  • [8] Complexity and information geometry in the transverse XY model
    Jaiswal, Nitesh
    Gautam, Mamta
    Sarkar, Tapobrata
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [9] Information Geometry, Complexity Measures and Data Analysis
    Amigo, Jose M.
    Tempesta, Piergiulio
    ENTROPY, 2022, 24 (12)
  • [10] Elementary complexity and geometry of interaction - (Extended abstract)
    Baillot, P
    Pedicini, M
    TYPED LAMBDA CALCULI AND APPLICATIONS, 1999, 1581 : 25 - 39