TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models

被引:16
|
作者
Schlegel, Udo [1 ]
Duy Lam Vo [1 ]
Keim, Daniel A. [1 ]
Seebacher, Daniel [1 ]
机构
[1] Univ Konstanz, Constance, Germany
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I | 2021年 / 1524卷
基金
欧盟地平线“2020”;
关键词
Explainable AI; LIME; Time series; LEARNING-MODELS;
D O I
10.1007/978-3-030-93736-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [1] LIVE: A Local Interpretable model-agnostic Visualizations and Explanations
    Shi, Peichang
    Gangopadhyay, Aryya
    Yu, Ping
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 245 - 254
  • [2] Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability
    Zafar, Muhammad Rehman
    Khan, Naimul
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2021, 3 (03): : 525 - 541
  • [3] Causality-Aware Local Interpretable Model-Agnostic Explanations
    Cinquin, Martina
    Guidotti, Riccardo
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 108 - 124
  • [4] Evaluating Local Interpretable Model-Agnostic Explanations on Clinical Machine Learning Classification Models
    Kumarakulasinghe, Nesaretnam Barr
    Blomberg, Tobias
    Lin, Jintai
    Leao, Alexandra Saraiva
    Papapetrou, Panagiotis
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 7 - 12
  • [5] Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases
    de Sousa, Iam Palatnik
    Bernardes Rebuzzi Vellasco, Marley Maria
    da Silva, Eduardo Costa
    SENSORS, 2019, 19 (13)
  • [6] Stable local interpretable model-agnostic explanations based on a variational autoencoder
    Xiang, Xu
    Yu, Hong
    Wang, Ye
    Wang, Guoyin
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28226 - 28240
  • [7] Pixel-Based Clustering for Local Interpretable Model-Agnostic Explanations
    Qian, Junyan
    Wen, Tong
    Ling, Ming
    Du, Xiaofu
    Ding, Hao
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2025, 15 (03) : 257 - 277
  • [8] Stable local interpretable model-agnostic explanations based on a variational autoencoder
    Xu Xiang
    Hong Yu
    Ye Wang
    Guoyin Wang
    Applied Intelligence, 2023, 53 : 28226 - 28240
  • [9] Interpretable heartbeat classification using local model-agnostic explanations on ECGs
    Neves, Ines
    Folgado, Duarte
    Santos, Sara
    Barandas, Marilia
    Campagner, Andrea
    Ronzio, Luca
    Cabitza, Federico
    Gamboa, Hugo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [10] Enhancing Visualization and Explainability of Computer Vision Models with Local Interpretable Model-Agnostic Explanations (LIME)
    Hamilton, Nicholas
    Webb, Adam
    Wilder, Matt
    Hendrickson, Ben
    Blanck, Matt
    Nelson, Erin
    Roemer, Wiley
    Havens, Timothy C.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 604 - 611