Marginal Screening for Partial Least Squares Regression

被引:8
|
作者
Zhao, Naifei [1 ]
Xu, Qingsong [1 ]
Wang, Hong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金;
关键词
Marginal screening; partial least squares; variable selection; VARIABLE SELECTION METHODS; NONCONCAVE PENALIZED LIKELIHOOD; NEAR-INFRARED SPECTRA; UVE-PLS METHOD; MULTIVARIATE CALIBRATION; DIMENSION REDUCTION; LINEAR-MODELS; ELIMINATION; PREDICTION; LASSO;
D O I
10.1109/ACCESS.2017.2728532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial least squares (PLS) regression is a versatile modeling approach for high-dimensional data analysis. Recently, PLS-based variable selection has attracted great attention due to high-throughput data reduction and modeling interpretability. In this paper, a class of variable selection methods for PLS, which employs marginal screening approaches to select relevant variables, is proposed. The proposed methods select variables in two steps: first, a solution path of all predictors is generated by sorting the sequence of marginal correlations between each predictor and response, and second, variable selection is carried out by screening the solution path with PLS. We provide three marginal screening methods for PLS in this paper, namely, sure independence screening (SIS), profiled independence screening ( PIS), and high-dimensional ordinary least-squares projection (HOLP). The promising performance of our methods is illustrated via three near-infrared (NIR) spectral data sets. Compared with SIS and PIS, HOLP for PLS is more suitable for selecting important wavelengths and enhances the prediction accuracy in the NIR spectral data.
引用
收藏
页码:14047 / 14055
页数:9
相关论文
共 50 条
  • [1] Partial least squares regression
    deJong, S
    Phatak, A
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 25 - 36
  • [2] A twist to partial least squares regression
    Indahl, U
    JOURNAL OF CHEMOMETRICS, 2005, 19 (01) : 32 - 44
  • [3] Partial least trimmed squares regression
    Xie, Zhonghao
    Feng, Xi'an
    Chen, Xiaojing
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 221
  • [4] Spectral Partial Least Squares Regression
    Chen, Jiangfenng
    Yuan, Baozong
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1351 - 1354
  • [5] Partial least median of squares regression
    Xie, Zhonghao
    Feng, Xi'an
    Li, Limin
    Chen, Xiaojing
    JOURNAL OF CHEMOMETRICS, 2022, 36 (08)
  • [6] Envelopes and partial least squares regression
    Cook, R. D.
    Helland, I. S.
    Su, Z.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) : 851 - 877
  • [7] Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS
    Yaroshchyk, P.
    Death, D. L.
    Spencer, S. J.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2012, 27 (01) : 92 - 98
  • [8] Kernel partial least-squares regression
    Bai Yifeng
    Xiao Han
    Yu Long
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1231 - +
  • [9] Model and estimators for partial least squares regression
    Helland, Inge Svein
    Saebo, Solve
    Almoy, Trygve
    Rimal, Raju
    JOURNAL OF CHEMOMETRICS, 2018, 32 (09)
  • [10] The model space in partial least squares regression
    Pell, Randy J.
    Ramos, L. Scott
    Manne, Rolf
    JOURNAL OF CHEMOMETRICS, 2007, 21 (3-4) : 165 - 172