A note on singular perturbation problems via Aubry-Mather theory

被引:0
|
作者
Camilli, Fabio
Cesaroni, Annalisa
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67040 Laquila, Italy
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
singular perturbations; viscosity solutions; PDE Aubry-Mather theory;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exploiting the metric approach to Hamilton-Jacobi equation recently introduced by Fathi and Siconolfi [13], we prove a singular perturbation result for a general class of Hamilton-Jacobi equations. Considered in the framework of small random perturbations of dynamical systems, it extends a result due to Kamin [19] to the case of a dynamical system having several attracting points inside the domain.
引用
收藏
页码:807 / 819
页数:13
相关论文
共 50 条
  • [1] Aubry-Mather theory
    Siburg, KF
    PRINCIPLE OF LEAST ACTION IN GEOMETRY AND DYNAMICS, 2004, 1844 : 1 - +
  • [2] Aubry-Mather theory on graphs
    Siconolfi, Antonio
    Sorrentino, Alfonso
    NONLINEARITY, 2023, 36 (11) : 5819 - 5859
  • [3] Aubry-Mather theory for homeomorphisms
    Fathi, Albert
    Pageault, Pierre
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1187 - 1207
  • [4] On the stochastic Aubry-Mather theory
    Iturriaga, R
    Sánchez-Morgado, H
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2005, 11 (01): : 91 - 99
  • [5] MINIMAX PROBABILITIES FOR AUBRY-MATHER PROBLEMS
    Gomes, Diogo A.
    Jung, Nara
    Lopes, Artur O.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (05) : 789 - 813
  • [6] On the Aubry-Mather theory for symbolic dynamics
    Garibaldi, E.
    Lopes, A. O.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 791 - 815
  • [7] ON AUBRY-MATHER SETS
    VEERMAN, JJP
    TANGERMAN, FM
    PHYSICA D, 1990, 46 (02): : 149 - 162
  • [8] Aubry-Mather theory for Lorentzian manifolds
    Suhr, Stefan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [9] Quantum tomographic Aubry-Mather theory
    Shabani, A.
    Khellat, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [10] A stochastic analogue of Aubry-Mather theory
    Gomes, DA
    NONLINEARITY, 2002, 15 (03) : 581 - 603