Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems

被引:87
作者
Belloni, A. [1 ]
Chernozhukov, V. [2 ]
Kato, K. [3 ]
机构
[1] Duke Univ, Fuqua Sch Business, 100 Fuqua Dr, Durham, NC 27708 USA
[2] MIT, Dept Econ, Cambridge, MA 02142 USA
[3] Univ Tokyo, Grad Sch Econ, Bunkyo Ku, Tokyo 1130013, Japan
基金
日本学术振兴会; 美国国家科学基金会;
关键词
Instrument; Post-selection inference; Score test; Sparsity; Uniformly valid inference; Z-estimation; ASYMPTOTIC-BEHAVIOR; QUANTILE REGRESSION; PARAMETERS; MODELS; LASSO; P2/N;
D O I
10.1093/biomet/asu056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse median regression model with homoscedastic errors. Our methods are based on a moment equation that is immunized against nonregular estimation of the nuisance part of the median regression function by using Neyman's orthogonalization. We establish that the resulting instrumental median regression estimator of a target regression coefficient is asymptotically normally distributed uniformly with respect to the underlying sparse model and is semiparametrically efficient. We also generalize our method to a general nonsmooth Z-estimation framework where the number of target parameters is possibly much larger than the sample size. We extend Huber's results on asymptotic normality to this setting, demonstrating uniform asymptotic normality of the proposed estimators over rectangles, constructing simultaneous confidence bands on all of the target parameters, and establishing asymptotic validity of the bands uniformly over underlying approximately sparse models.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1959, PROB STAT HAROLD CRA
[2]   Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain [J].
Belloni, A. ;
Chen, D. ;
Chernozhukov, V. ;
Hansen, C. .
ECONOMETRICA, 2012, 80 (06) :2369-2429
[3]  
Belloni A, 2013, ECON SOC MONOGR, P245
[4]   PIVOTAL ESTIMATION VIA SQUARE-ROOT LASSO IN NONPARAMETRIC REGRESSION [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Wang, Lie .
ANNALS OF STATISTICS, 2014, 42 (02) :757-788
[5]   Inference on Treatment Effects after Selection among High-Dimensional ControlsaEuro [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Hansen, Christian .
REVIEW OF ECONOMIC STUDIES, 2014, 81 (02) :608-650
[6]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[7]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[8]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[9]   Instrumental variable quantile regression: A robust inference approach [J].
Chernozhukov, Victor ;
Hansen, Christian .
JOURNAL OF ECONOMETRICS, 2008, 142 (01) :379-398
[10]   GAUSSIAN APPROXIMATION OF SUPREMA OF EMPIRICAL PROCESSES [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Kato, Kengo .
ANNALS OF STATISTICS, 2014, 42 (04) :1564-1597