A latent-class mixture model for incomplete longitudinal Gaussian data

被引:56
|
作者
Beunckens, Caroline [1 ]
Molenberghs, Geert [1 ]
Verbeke, Geert [2 ]
Mallinckrodt, Craig [3 ]
机构
[1] Hasselt Univ, Ctr Stat, B-3590 Diepenbeek, Belgium
[2] Catholic Univ Louvain, Ctr Biostat, B-3000 Louvain, Belgium
[3] Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA
关键词
latent class; nonrandom missingness; random effect; shared parameter;
D O I
10.1111/j.1541-0420.2007.00837.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in practice. While the possibility of data missing not at random (MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are not well suited for the primary analysis in clinical trials. Rather than either forgetting about or blindly shifting to an MNAR framework, the optimal place for MNAR analyses is within a sensitivity-analysis context. One such route for sensitivity analysis is to consider, next to selection models, pattern-mixture models or shared-parameter models. The latter can also be extended to a latent-class mixture model, the approach taken in this article. The performance of the so-obtained flexible model is assessed through simulations and the model is applied to data from a depression trial.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 50 条
  • [1] SEMIPARAMETRIC LATENT-CLASS MODELS FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA
    Wong, Kin Yau
    Zeng, Donglin
    Lin, D. Y.
    ANNALS OF STATISTICS, 2022, 50 (01): : 487 - 510
  • [2] Gaussian Mixture Model Clustering with Incomplete Data
    Zhang, Yi
    Li, Miaomiao
    Wang, Siwei
    Dai, Sisi
    Luo, Lei
    Zhu, En
    Xu, Huiying
    Zhu, Xinzhong
    Yao, Chaoyun
    Zhou, Haoran
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [3] Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
    Mairead L. Bermingham
    Ian G. Handel
    Elizabeth J. Glass
    John A. Woolliams
    B. Mark de Clare Bronsvoort
    Stewart H. McBride
    Robin A. Skuce
    Adrian R. Allen
    Stanley W. J. McDowell
    Stephen C. Bishop
    Scientific Reports, 5
  • [4] Hui and Walter's latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
    Bermingham, Mairead L.
    Handel, Ian G.
    Glass, Elizabeth J.
    Woolliams, John A.
    Bronsvoort, B. Mark de Clare
    McBride, Stewart H.
    Skuce, Robin A.
    Allen, Adrian R.
    McDowell, Stanley W. J.
    Bishop, Stephen C.
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Indexing systematic rater agreement with a latent-class model
    Schuster, C
    Smith, DA
    PSYCHOLOGICAL METHODS, 2002, 7 (03) : 384 - 395
  • [6] A latent-class model for estimating product-choice probabilities from clickstream data
    Nishimura, Naoki
    Sukegawa, Noriyoshi
    Takano, Yuichi
    Iwanaga, Jiro
    INFORMATION SCIENCES, 2018, 429 : 406 - 420
  • [7] A Latent Gaussian process model for analysing intensive longitudinal data
    Chen, Yunxiao
    Zhang, Siliang
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2020, 73 (02): : 237 - 260
  • [8] Bayesian nonparametric latent class model for longitudinal data
    Koo, Wonmo
    Kim, Heeyoung
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3381 - 3395
  • [9] A LATENT-CLASS REGRESSION APPROACH FOR THE ANALYSIS OF RECURRENT CHOICE DATA
    BOCKENHOLT, U
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1993, 46 : 95 - 118
  • [10] Fitting Gaussian mixture models on incomplete data
    Zachary R. McCaw
    Hugues Aschard
    Hanna Julienne
    BMC Bioinformatics, 23