Order of current variance and diffusivity in the asymmetric simple exclusion process

被引:39
|
作者
Balazs, Marton [1 ]
Seppalainen, Timo [2 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, MTA BME Stochast Res Grp, H-1111 Budapest, Hungary
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
匈牙利科学研究基金会; 美国国家科学基金会;
关键词
CURRENT FLUCTUATIONS; DEPOSITION MODELS; GROWTH-MODEL; PARTICLE; SYSTEMS; SUPERDIFFUSIVITY; ASYMPTOTICS; LIMIT;
D O I
10.4007/annals.2010.171.1237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the variance of the current across a characteristic is of order t(2/3) in a stationary asymmetric simple exclusion process, and that the diffusivity has order t(1/3). The proof proceeds via couplings to show the corresponding moment bounds for a second class particle.
引用
收藏
页码:1237 / 1265
页数:29
相关论文
共 50 条